MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsnOLD Structured version   Visualization version   GIF version

Theorem pwsnOLD 4824
Description: Obsolete version of pwsn 4823 as of 14-Apr-2024. Note that the proof is essentially the same once one inlines sssn 4752 in the proof of pwsn 4823. (Contributed by NM, 5-Jun-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwsnOLD 𝒫 {𝐴} = {∅, {𝐴}}

Proof of Theorem pwsnOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss2 3948 . . . . . . . . 9 (𝑥 ⊆ {𝐴} ↔ ∀𝑦(𝑦𝑥𝑦 ∈ {𝐴}))
2 velsn 4576 . . . . . . . . . . 11 (𝑦 ∈ {𝐴} ↔ 𝑦 = 𝐴)
32imbi2i 338 . . . . . . . . . 10 ((𝑦𝑥𝑦 ∈ {𝐴}) ↔ (𝑦𝑥𝑦 = 𝐴))
43albii 1819 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 ∈ {𝐴}) ↔ ∀𝑦(𝑦𝑥𝑦 = 𝐴))
51, 4bitri 277 . . . . . . . 8 (𝑥 ⊆ {𝐴} ↔ ∀𝑦(𝑦𝑥𝑦 = 𝐴))
6 neq0 4302 . . . . . . . . . 10 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
7 exintr 1892 . . . . . . . . . 10 (∀𝑦(𝑦𝑥𝑦 = 𝐴) → (∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥𝑦 = 𝐴)))
86, 7syl5bi 244 . . . . . . . . 9 (∀𝑦(𝑦𝑥𝑦 = 𝐴) → (¬ 𝑥 = ∅ → ∃𝑦(𝑦𝑥𝑦 = 𝐴)))
9 dfclel 2893 . . . . . . . . . . 11 (𝐴𝑥 ↔ ∃𝑦(𝑦 = 𝐴𝑦𝑥))
10 exancom 1860 . . . . . . . . . . 11 (∃𝑦(𝑦 = 𝐴𝑦𝑥) ↔ ∃𝑦(𝑦𝑥𝑦 = 𝐴))
119, 10bitr2i 278 . . . . . . . . . 10 (∃𝑦(𝑦𝑥𝑦 = 𝐴) ↔ 𝐴𝑥)
12 snssi 4734 . . . . . . . . . 10 (𝐴𝑥 → {𝐴} ⊆ 𝑥)
1311, 12sylbi 219 . . . . . . . . 9 (∃𝑦(𝑦𝑥𝑦 = 𝐴) → {𝐴} ⊆ 𝑥)
148, 13syl6 35 . . . . . . . 8 (∀𝑦(𝑦𝑥𝑦 = 𝐴) → (¬ 𝑥 = ∅ → {𝐴} ⊆ 𝑥))
155, 14sylbi 219 . . . . . . 7 (𝑥 ⊆ {𝐴} → (¬ 𝑥 = ∅ → {𝐴} ⊆ 𝑥))
1615anc2li 558 . . . . . 6 (𝑥 ⊆ {𝐴} → (¬ 𝑥 = ∅ → (𝑥 ⊆ {𝐴} ∧ {𝐴} ⊆ 𝑥)))
17 eqss 3975 . . . . . 6 (𝑥 = {𝐴} ↔ (𝑥 ⊆ {𝐴} ∧ {𝐴} ⊆ 𝑥))
1816, 17syl6ibr 254 . . . . 5 (𝑥 ⊆ {𝐴} → (¬ 𝑥 = ∅ → 𝑥 = {𝐴}))
1918orrd 859 . . . 4 (𝑥 ⊆ {𝐴} → (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
20 0ss 4343 . . . . . 6 ∅ ⊆ {𝐴}
21 sseq1 3985 . . . . . 6 (𝑥 = ∅ → (𝑥 ⊆ {𝐴} ↔ ∅ ⊆ {𝐴}))
2220, 21mpbiri 260 . . . . 5 (𝑥 = ∅ → 𝑥 ⊆ {𝐴})
23 eqimss 4016 . . . . 5 (𝑥 = {𝐴} → 𝑥 ⊆ {𝐴})
2422, 23jaoi 853 . . . 4 ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) → 𝑥 ⊆ {𝐴})
2519, 24impbii 211 . . 3 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
2625abbii 2885 . 2 {𝑥𝑥 ⊆ {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
27 df-pw 4534 . 2 𝒫 {𝐴} = {𝑥𝑥 ⊆ {𝐴}}
28 dfpr2 4579 . 2 {∅, {𝐴}} = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 = {𝐴})}
2926, 27, 283eqtr4i 2853 1 𝒫 {𝐴} = {∅, {𝐴}}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  wal 1534   = wceq 1536  wex 1779  wcel 2113  {cab 2798  wss 3929  c0 4284  𝒫 cpw 4532  {csn 4560  {cpr 4562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-pw 4534  df-sn 4561  df-pr 4563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator