| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3046 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | exintr 1892 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | n0 4319 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | df-rex 3055 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ne 2927 df-ral 3046 df-rex 3055 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: r19.2zb 4462 intssuni 4937 iinssiun 4972 riinn0 5050 iinexg 5306 reusv2lem2 5357 reusv2lem3 5358 xpiindi 5802 cnviin 6262 eusvobj2 7382 iiner 8765 finsschain 9317 cfeq0 10216 cfsuc 10217 iundom2g 10500 alephval2 10532 prlem934 10993 supaddc 12157 supadd 12158 supmul1 12159 supmullem2 12161 supmul 12162 rexfiuz 15321 r19.2uz 15325 climuni 15525 caurcvg 15650 caurcvg2 15651 caucvg 15652 pc2dvds 16857 vdwmc2 16957 vdwlem6 16964 vdwnnlem3 16975 issubg4 19084 gexcl3 19524 lbsextlem2 21076 iincld 22933 opnnei 23014 cncnp2 23175 lmmo 23274 iunconn 23322 ptbasfi 23475 filuni 23779 isfcls 23903 fclsopn 23908 ustfilxp 24107 nrginvrcn 24587 lebnumlem3 24869 cfil3i 25176 caun0 25188 iscmet3 25200 nulmbl2 25444 dyadmax 25506 itg2seq 25650 itg2monolem1 25658 bddiblnc 25750 rolle 25901 c1lip1 25909 taylfval 26273 ulm0 26307 frgrreg 30330 bnj906 34927 cvmliftlem15 35292 dfon2lem6 35783 filnetlem4 36376 itg2addnclem 37672 itg2addnc 37675 itg2gt0cn 37676 ftc1anc 37702 filbcmb 37741 incsequz 37749 isbnd2 37784 isbnd3 37785 ssbnd 37789 unichnidl 38032 iunconnlem2 44931 upbdrech 45310 infxrpnf 45449 iuneqconst2 48815 iineqconst2 48816 iinxp 48823 iinfssc 49050 |
| Copyright terms: Public domain | W3C validator |