Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version |
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1980). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
Ref | Expression |
---|---|
r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3069 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | exintr 1895 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 1, 2 | sylbi 216 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | n0 4280 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
5 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
7 | 6 | impcom 408 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-ral 3069 df-rex 3070 df-dif 3890 df-nul 4257 |
This theorem is referenced by: r19.2zb 4426 intssuni 4901 iinssiun 4937 riinn0 5012 iinexg 5265 reusv2lem2 5322 reusv2lem3 5323 xpiindi 5744 cnviin 6189 eusvobj2 7268 iiner 8578 finsschain 9126 cfeq0 10012 cfsuc 10013 iundom2g 10296 alephval2 10328 prlem934 10789 supaddc 11942 supadd 11943 supmul1 11944 supmullem2 11946 supmul 11947 rexfiuz 15059 r19.2uz 15063 climuni 15261 caurcvg 15388 caurcvg2 15389 caucvg 15390 pc2dvds 16580 vdwmc2 16680 vdwlem6 16687 vdwnnlem3 16698 issubg4 18774 gexcl3 19192 lbsextlem2 20421 iincld 22190 opnnei 22271 cncnp2 22432 lmmo 22531 iunconn 22579 ptbasfi 22732 filuni 23036 isfcls 23160 fclsopn 23165 ustfilxp 23364 nrginvrcn 23856 lebnumlem3 24126 cfil3i 24433 caun0 24445 iscmet3 24457 nulmbl2 24700 dyadmax 24762 itg2seq 24907 itg2monolem1 24915 bddiblnc 25006 rolle 25154 c1lip1 25161 taylfval 25518 ulm0 25550 frgrreg 28758 bnj906 32910 cvmliftlem15 33260 dfon2lem6 33764 filnetlem4 34570 itg2addnclem 35828 itg2addnc 35831 itg2gt0cn 35832 ftc1anc 35858 filbcmb 35898 incsequz 35906 isbnd2 35941 isbnd3 35942 ssbnd 35946 unichnidl 36189 iunconnlem2 42555 upbdrech 42844 infxrpnf 42986 |
Copyright terms: Public domain | W3C validator |