| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | exintr 1892 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | n0 4304 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-ral 3045 df-rex 3054 df-dif 3906 df-nul 4285 |
| This theorem is referenced by: r19.2zb 4447 intssuni 4920 iinssiun 4955 riinn0 5032 iinexg 5287 reusv2lem2 5338 reusv2lem3 5339 xpiindi 5778 cnviin 6234 eusvobj2 7341 iiner 8716 finsschain 9249 cfeq0 10150 cfsuc 10151 iundom2g 10434 alephval2 10466 prlem934 10927 supaddc 12092 supadd 12093 supmul1 12094 supmullem2 12096 supmul 12097 rexfiuz 15255 r19.2uz 15259 climuni 15459 caurcvg 15584 caurcvg2 15585 caucvg 15586 pc2dvds 16791 vdwmc2 16891 vdwlem6 16898 vdwnnlem3 16909 issubg4 19024 gexcl3 19466 lbsextlem2 21066 iincld 22924 opnnei 23005 cncnp2 23166 lmmo 23265 iunconn 23313 ptbasfi 23466 filuni 23770 isfcls 23894 fclsopn 23899 ustfilxp 24098 nrginvrcn 24578 lebnumlem3 24860 cfil3i 25167 caun0 25179 iscmet3 25191 nulmbl2 25435 dyadmax 25497 itg2seq 25641 itg2monolem1 25649 bddiblnc 25741 rolle 25892 c1lip1 25900 taylfval 26264 ulm0 26298 frgrreg 30338 bnj906 34897 cvmliftlem15 35271 dfon2lem6 35762 filnetlem4 36355 itg2addnclem 37651 itg2addnc 37654 itg2gt0cn 37655 ftc1anc 37681 filbcmb 37720 incsequz 37728 isbnd2 37763 isbnd3 37764 ssbnd 37768 unichnidl 38011 iunconnlem2 44908 upbdrech 45287 infxrpnf 45425 iuneqconst2 48807 iineqconst2 48808 iinxp 48815 iinfssc 49042 |
| Copyright terms: Public domain | W3C validator |