| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | exintr 1892 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | n0 4316 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-ral 3045 df-rex 3054 df-dif 3917 df-nul 4297 |
| This theorem is referenced by: r19.2zb 4459 intssuni 4934 iinssiun 4969 riinn0 5047 iinexg 5303 reusv2lem2 5354 reusv2lem3 5355 xpiindi 5799 cnviin 6259 eusvobj2 7379 iiner 8762 finsschain 9310 cfeq0 10209 cfsuc 10210 iundom2g 10493 alephval2 10525 prlem934 10986 supaddc 12150 supadd 12151 supmul1 12152 supmullem2 12154 supmul 12155 rexfiuz 15314 r19.2uz 15318 climuni 15518 caurcvg 15643 caurcvg2 15644 caucvg 15645 pc2dvds 16850 vdwmc2 16950 vdwlem6 16957 vdwnnlem3 16968 issubg4 19077 gexcl3 19517 lbsextlem2 21069 iincld 22926 opnnei 23007 cncnp2 23168 lmmo 23267 iunconn 23315 ptbasfi 23468 filuni 23772 isfcls 23896 fclsopn 23901 ustfilxp 24100 nrginvrcn 24580 lebnumlem3 24862 cfil3i 25169 caun0 25181 iscmet3 25193 nulmbl2 25437 dyadmax 25499 itg2seq 25643 itg2monolem1 25651 bddiblnc 25743 rolle 25894 c1lip1 25902 taylfval 26266 ulm0 26300 frgrreg 30323 bnj906 34920 cvmliftlem15 35285 dfon2lem6 35776 filnetlem4 36369 itg2addnclem 37665 itg2addnc 37668 itg2gt0cn 37669 ftc1anc 37695 filbcmb 37734 incsequz 37742 isbnd2 37777 isbnd3 37778 ssbnd 37782 unichnidl 38025 iunconnlem2 44924 upbdrech 45303 infxrpnf 45442 iuneqconst2 48811 iineqconst2 48812 iinxp 48819 iinfssc 49046 |
| Copyright terms: Public domain | W3C validator |