![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version |
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
Ref | Expression |
---|---|
r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | exintr 1891 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 1, 2 | sylbi 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | n0 4376 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
5 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ne 2947 df-ral 3068 df-rex 3077 df-dif 3979 df-nul 4353 |
This theorem is referenced by: r19.2zb 4519 intssuni 4994 iinssiun 5028 riinn0 5106 iinexg 5366 reusv2lem2 5417 reusv2lem3 5418 xpiindi 5860 cnviin 6317 eusvobj2 7440 iiner 8847 finsschain 9429 cfeq0 10325 cfsuc 10326 iundom2g 10609 alephval2 10641 prlem934 11102 supaddc 12262 supadd 12263 supmul1 12264 supmullem2 12266 supmul 12267 rexfiuz 15396 r19.2uz 15400 climuni 15598 caurcvg 15725 caurcvg2 15726 caucvg 15727 pc2dvds 16926 vdwmc2 17026 vdwlem6 17033 vdwnnlem3 17044 issubg4 19185 gexcl3 19629 lbsextlem2 21184 iincld 23068 opnnei 23149 cncnp2 23310 lmmo 23409 iunconn 23457 ptbasfi 23610 filuni 23914 isfcls 24038 fclsopn 24043 ustfilxp 24242 nrginvrcn 24734 lebnumlem3 25014 cfil3i 25322 caun0 25334 iscmet3 25346 nulmbl2 25590 dyadmax 25652 itg2seq 25797 itg2monolem1 25805 bddiblnc 25897 rolle 26048 c1lip1 26056 taylfval 26418 ulm0 26452 frgrreg 30426 bnj906 34906 cvmliftlem15 35266 dfon2lem6 35752 filnetlem4 36347 itg2addnclem 37631 itg2addnc 37634 itg2gt0cn 37635 ftc1anc 37661 filbcmb 37700 incsequz 37708 isbnd2 37743 isbnd3 37744 ssbnd 37748 unichnidl 37991 iunconnlem2 44906 upbdrech 45220 infxrpnf 45361 |
Copyright terms: Public domain | W3C validator |