![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version |
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1958). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
Ref | Expression |
---|---|
r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3110 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | exintr 1874 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 1, 2 | sylbi 218 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | n0 4230 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
5 | df-rex 3111 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4g 297 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
7 | 6 | impcom 408 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1520 ∃wex 1761 ∈ wcel 2081 ≠ wne 2984 ∀wral 3105 ∃wrex 3106 ∅c0 4211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-dif 3862 df-nul 4212 |
This theorem is referenced by: r19.2zb 4355 intssuni 4804 iinssiun 4837 riinn0 4904 iinexg 5135 reusv2lem2 5191 reusv2lem3 5192 xpiindi 5592 cnviin 6012 eusvobj2 7009 iiner 8219 finsschain 8677 cfeq0 9524 cfsuc 9525 iundom2g 9808 alephval2 9840 prlem934 10301 supaddc 11456 supadd 11457 supmul1 11458 supmullem2 11460 supmul 11461 rexfiuz 14541 r19.2uz 14545 climuni 14743 caurcvg 14867 caurcvg2 14868 caucvg 14869 pc2dvds 16044 vdwmc2 16144 vdwlem6 16151 vdwnnlem3 16162 issubg4 18052 gexcl3 18442 lbsextlem2 19621 iincld 21331 opnnei 21412 cncnp2 21573 lmmo 21672 iunconn 21720 ptbasfi 21873 filuni 22177 isfcls 22301 fclsopn 22306 ustfilxp 22504 nrginvrcn 22984 lebnumlem3 23250 cfil3i 23555 caun0 23567 iscmet3 23579 nulmbl2 23820 dyadmax 23882 itg2seq 24026 itg2monolem1 24034 rolle 24270 c1lip1 24277 taylfval 24630 ulm0 24662 frgrreg 27865 bnj906 31818 cvmliftlem15 32154 dfon2lem6 32642 filnetlem4 33339 itg2addnclem 34493 itg2addnc 34496 itg2gt0cn 34497 bddiblnc 34512 ftc1anc 34525 filbcmb 34566 incsequz 34574 isbnd2 34612 isbnd3 34613 ssbnd 34617 unichnidl 34860 iunconnlem2 40827 upbdrech 41132 infxrpnf 41282 |
Copyright terms: Public domain | W3C validator |