| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | exintr 1892 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | n0 4312 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ne 2926 df-ral 3045 df-rex 3054 df-dif 3914 df-nul 4293 |
| This theorem is referenced by: r19.2zb 4455 intssuni 4930 iinssiun 4965 riinn0 5042 iinexg 5298 reusv2lem2 5349 reusv2lem3 5350 xpiindi 5789 cnviin 6247 eusvobj2 7361 iiner 8739 finsschain 9286 cfeq0 10185 cfsuc 10186 iundom2g 10469 alephval2 10501 prlem934 10962 supaddc 12126 supadd 12127 supmul1 12128 supmullem2 12130 supmul 12131 rexfiuz 15290 r19.2uz 15294 climuni 15494 caurcvg 15619 caurcvg2 15620 caucvg 15621 pc2dvds 16826 vdwmc2 16926 vdwlem6 16933 vdwnnlem3 16944 issubg4 19053 gexcl3 19493 lbsextlem2 21045 iincld 22902 opnnei 22983 cncnp2 23144 lmmo 23243 iunconn 23291 ptbasfi 23444 filuni 23748 isfcls 23872 fclsopn 23877 ustfilxp 24076 nrginvrcn 24556 lebnumlem3 24838 cfil3i 25145 caun0 25157 iscmet3 25169 nulmbl2 25413 dyadmax 25475 itg2seq 25619 itg2monolem1 25627 bddiblnc 25719 rolle 25870 c1lip1 25878 taylfval 26242 ulm0 26276 frgrreg 30296 bnj906 34893 cvmliftlem15 35258 dfon2lem6 35749 filnetlem4 36342 itg2addnclem 37638 itg2addnc 37641 itg2gt0cn 37642 ftc1anc 37668 filbcmb 37707 incsequz 37715 isbnd2 37750 isbnd3 37751 ssbnd 37755 unichnidl 37998 iunconnlem2 44897 upbdrech 45276 infxrpnf 45415 iuneqconst2 48784 iineqconst2 48785 iinxp 48792 iinfssc 49019 |
| Copyright terms: Public domain | W3C validator |