Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version |
Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1981). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
Ref | Expression |
---|---|
r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | exintr 1896 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
3 | 1, 2 | sylbi 216 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
4 | n0 4277 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
5 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4g 295 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-ral 3068 df-rex 3069 df-dif 3886 df-nul 4254 |
This theorem is referenced by: r19.2zb 4423 intssuni 4898 iinssiun 4934 riinn0 5008 iinexg 5260 reusv2lem2 5317 reusv2lem3 5318 xpiindi 5733 cnviin 6178 eusvobj2 7248 iiner 8536 finsschain 9056 cfeq0 9943 cfsuc 9944 iundom2g 10227 alephval2 10259 prlem934 10720 supaddc 11872 supadd 11873 supmul1 11874 supmullem2 11876 supmul 11877 rexfiuz 14987 r19.2uz 14991 climuni 15189 caurcvg 15316 caurcvg2 15317 caucvg 15318 pc2dvds 16508 vdwmc2 16608 vdwlem6 16615 vdwnnlem3 16626 issubg4 18689 gexcl3 19107 lbsextlem2 20336 iincld 22098 opnnei 22179 cncnp2 22340 lmmo 22439 iunconn 22487 ptbasfi 22640 filuni 22944 isfcls 23068 fclsopn 23073 ustfilxp 23272 nrginvrcn 23762 lebnumlem3 24032 cfil3i 24338 caun0 24350 iscmet3 24362 nulmbl2 24605 dyadmax 24667 itg2seq 24812 itg2monolem1 24820 bddiblnc 24911 rolle 25059 c1lip1 25066 taylfval 25423 ulm0 25455 frgrreg 28659 bnj906 32810 cvmliftlem15 33160 dfon2lem6 33670 filnetlem4 34497 itg2addnclem 35755 itg2addnc 35758 itg2gt0cn 35759 ftc1anc 35785 filbcmb 35825 incsequz 35833 isbnd2 35868 isbnd3 35869 ssbnd 35873 unichnidl 36116 iunconnlem2 42444 upbdrech 42734 infxrpnf 42876 |
Copyright terms: Public domain | W3C validator |