| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1977). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3048 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | exintr 1893 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | n0 4300 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ne 2929 df-ral 3048 df-rex 3057 df-dif 3900 df-nul 4281 |
| This theorem is referenced by: r19.2zb 4443 intssuni 4918 iinssiun 4953 riinn0 5029 iinexg 5284 reusv2lem2 5335 reusv2lem3 5336 xpiindi 5774 cnviin 6233 eusvobj2 7338 iiner 8713 finsschain 9243 cfeq0 10147 cfsuc 10148 iundom2g 10431 alephval2 10463 prlem934 10924 supaddc 12089 supadd 12090 supmul1 12091 supmullem2 12093 supmul 12094 rexfiuz 15255 r19.2uz 15259 climuni 15459 caurcvg 15584 caurcvg2 15585 caucvg 15586 pc2dvds 16791 vdwmc2 16891 vdwlem6 16898 vdwnnlem3 16909 issubg4 19058 gexcl3 19499 lbsextlem2 21096 iincld 22954 opnnei 23035 cncnp2 23196 lmmo 23295 iunconn 23343 ptbasfi 23496 filuni 23800 isfcls 23924 fclsopn 23929 ustfilxp 24128 nrginvrcn 24607 lebnumlem3 24889 cfil3i 25196 caun0 25208 iscmet3 25220 nulmbl2 25464 dyadmax 25526 itg2seq 25670 itg2monolem1 25678 bddiblnc 25770 rolle 25921 c1lip1 25929 taylfval 26293 ulm0 26327 frgrreg 30374 bnj906 34942 cvmliftlem15 35342 dfon2lem6 35830 filnetlem4 36423 itg2addnclem 37719 itg2addnc 37722 itg2gt0cn 37723 ftc1anc 37749 filbcmb 37788 incsequz 37796 isbnd2 37831 isbnd3 37832 ssbnd 37836 unichnidl 38079 iunconnlem2 44975 upbdrech 45354 infxrpnf 45492 iuneqconst2 48862 iineqconst2 48863 iinxp 48870 iinfssc 49097 |
| Copyright terms: Public domain | W3C validator |