| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.2z | Structured version Visualization version GIF version | ||
| Description: Theorem 19.2 of [Margaris] p. 89 with restricted quantifiers (compare 19.2 1976). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003.) |
| Ref | Expression |
|---|---|
| r19.2z | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3052 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 2 | exintr 1892 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 3 | 1, 2 | sylbi 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 4 | n0 4328 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 5 | df-rex 3061 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | 6 | impcom 407 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-ne 2933 df-ral 3052 df-rex 3061 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: r19.2zb 4471 intssuni 4946 iinssiun 4981 riinn0 5059 iinexg 5318 reusv2lem2 5369 reusv2lem3 5370 xpiindi 5815 cnviin 6275 eusvobj2 7397 iiner 8803 finsschain 9371 cfeq0 10270 cfsuc 10271 iundom2g 10554 alephval2 10586 prlem934 11047 supaddc 12209 supadd 12210 supmul1 12211 supmullem2 12213 supmul 12214 rexfiuz 15366 r19.2uz 15370 climuni 15568 caurcvg 15693 caurcvg2 15694 caucvg 15695 pc2dvds 16899 vdwmc2 16999 vdwlem6 17006 vdwnnlem3 17017 issubg4 19128 gexcl3 19568 lbsextlem2 21120 iincld 22977 opnnei 23058 cncnp2 23219 lmmo 23318 iunconn 23366 ptbasfi 23519 filuni 23823 isfcls 23947 fclsopn 23952 ustfilxp 24151 nrginvrcn 24631 lebnumlem3 24913 cfil3i 25221 caun0 25233 iscmet3 25245 nulmbl2 25489 dyadmax 25551 itg2seq 25695 itg2monolem1 25703 bddiblnc 25795 rolle 25946 c1lip1 25954 taylfval 26318 ulm0 26352 frgrreg 30375 bnj906 34961 cvmliftlem15 35320 dfon2lem6 35806 filnetlem4 36399 itg2addnclem 37695 itg2addnc 37698 itg2gt0cn 37699 ftc1anc 37725 filbcmb 37764 incsequz 37772 isbnd2 37807 isbnd3 37808 ssbnd 37812 unichnidl 38055 iunconnlem2 44959 upbdrech 45334 infxrpnf 45473 iuneqconst2 48801 iineqconst2 48802 iinxp 48809 iinfssc 49024 |
| Copyright terms: Public domain | W3C validator |