![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq23 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
feq23 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6704 | . 2 ⊢ (𝐴 = 𝐶 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐵)) | |
2 | feq3 6705 | . 2 ⊢ (𝐵 = 𝐷 → (𝐹:𝐶⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ⟶wf 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-fn 6551 df-f 6552 |
This theorem is referenced by: feq23i 6716 ismgmOLD 37323 ismndo2 37347 rngomndo 37408 seff 43746 |
Copyright terms: Public domain | W3C validator |