|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > feq23 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| feq23 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | feq2 6716 | . 2 ⊢ (𝐴 = 𝐶 → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐵)) | |
| 2 | feq3 6717 | . 2 ⊢ (𝐵 = 𝐷 → (𝐹:𝐶⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
| 3 | 1, 2 | sylan9bb 509 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ⟶wf 6556 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2728 df-ss 3967 df-fn 6563 df-f 6564 | 
| This theorem is referenced by: feq23i 6729 ismgmOLD 37858 ismndo2 37882 rngomndo 37943 seff 44333 | 
| Copyright terms: Public domain | W3C validator |