Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngomndo Structured version   Visualization version   GIF version

Theorem rngomndo 35345
Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
unmnd.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngomndo (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)

Proof of Theorem rngomndo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . . 4 (1st𝑅) = (1st𝑅)
2 unmnd.1 . . . 4 𝐻 = (2nd𝑅)
3 eqid 2824 . . . 4 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3rngosm 35310 . . 3 (𝑅 ∈ RingOps → 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅))
51, 2, 3rngoass 35316 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
65ralrimivvva 3187 . . 3 (𝑅 ∈ RingOps → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
71, 2, 3rngoi 35309 . . . 4 (𝑅 ∈ RingOps → (((1st𝑅) ∈ AbelOp ∧ 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)) ∧ (∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦(1st𝑅)𝑧)) = ((𝑥𝐻𝑦)(1st𝑅)(𝑥𝐻𝑧)) ∧ ((𝑥(1st𝑅)𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)(1st𝑅)(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
87simprrd 773 . . 3 (𝑅 ∈ RingOps → ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
92, 1rngorn1 35343 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = dom dom 𝐻)
10 xpid11 5790 . . . . . . . 8 ((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ↔ dom dom 𝐻 = ran (1st𝑅))
1110biimpri 231 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)))
12 feq23 6489 . . . . . . 7 (((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ∧ dom dom 𝐻 = ran (1st𝑅)) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
1311, 12mpancom 687 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
14 raleq 3396 . . . . . . . 8 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1514raleqbi1dv 3394 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1615raleqbi1dv 3394 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
17 raleq 3396 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1817rexeqbi1dv 3395 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1913, 16, 183anbi123d 1433 . . . . 5 (dom dom 𝐻 = ran (1st𝑅) → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
2019eqcoms 2832 . . . 4 (ran (1st𝑅) = dom dom 𝐻 → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
219, 20syl 17 . . 3 (𝑅 ∈ RingOps → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
224, 6, 8, 21mpbir3and 1339 . 2 (𝑅 ∈ RingOps → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
23 fvex 6676 . . . 4 (2nd𝑅) ∈ V
24 eleq1 2903 . . . 4 (𝐻 = (2nd𝑅) → (𝐻 ∈ V ↔ (2nd𝑅) ∈ V))
2523, 24mpbiri 261 . . 3 (𝐻 = (2nd𝑅) → 𝐻 ∈ V)
26 eqid 2824 . . . 4 dom dom 𝐻 = dom dom 𝐻
2726ismndo1 35283 . . 3 (𝐻 ∈ V → (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
282, 25, 27mp2b 10 . 2 (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
2922, 28sylibr 237 1 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  wrex 3134  Vcvv 3480   × cxp 5541  dom cdm 5543  ran crn 5544  wf 6341  cfv 6345  (class class class)co 7151  1st c1st 7684  2nd c2nd 7685  AbelOpcablo 28336  MndOpcmndo 35276  RingOpscrngo 35304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-fo 6351  df-fv 6353  df-ov 7154  df-1st 7686  df-2nd 7687  df-grpo 28285  df-ablo 28337  df-ass 35253  df-exid 35255  df-mgmOLD 35259  df-sgrOLD 35271  df-mndo 35277  df-rngo 35305
This theorem is referenced by:  rngoidmlem  35346  rngo1cl  35349  isdrngo2  35368
  Copyright terms: Public domain W3C validator