Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngomndo Structured version   Visualization version   GIF version

Theorem rngomndo 37919
Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
unmnd.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngomndo (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)

Proof of Theorem rngomndo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (1st𝑅) = (1st𝑅)
2 unmnd.1 . . . 4 𝐻 = (2nd𝑅)
3 eqid 2729 . . . 4 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3rngosm 37884 . . 3 (𝑅 ∈ RingOps → 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅))
51, 2, 3rngoass 37890 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
65ralrimivvva 3175 . . 3 (𝑅 ∈ RingOps → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
71, 2, 3rngoi 37883 . . . 4 (𝑅 ∈ RingOps → (((1st𝑅) ∈ AbelOp ∧ 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)) ∧ (∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦(1st𝑅)𝑧)) = ((𝑥𝐻𝑦)(1st𝑅)(𝑥𝐻𝑧)) ∧ ((𝑥(1st𝑅)𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)(1st𝑅)(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
87simprrd 773 . . 3 (𝑅 ∈ RingOps → ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
92, 1rngorn1 37917 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = dom dom 𝐻)
10 xpid11 5874 . . . . . . . 8 ((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ↔ dom dom 𝐻 = ran (1st𝑅))
1110biimpri 228 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)))
12 feq23 6633 . . . . . . 7 (((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ∧ dom dom 𝐻 = ran (1st𝑅)) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
1311, 12mpancom 688 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
14 raleq 3286 . . . . . . . 8 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1514raleqbi1dv 3301 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1615raleqbi1dv 3301 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
17 raleq 3286 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1817rexeqbi1dv 3302 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1913, 16, 183anbi123d 1438 . . . . 5 (dom dom 𝐻 = ran (1st𝑅) → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
2019eqcoms 2737 . . . 4 (ran (1st𝑅) = dom dom 𝐻 → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
219, 20syl 17 . . 3 (𝑅 ∈ RingOps → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
224, 6, 8, 21mpbir3and 1343 . 2 (𝑅 ∈ RingOps → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
23 fvex 6835 . . . 4 (2nd𝑅) ∈ V
24 eleq1 2816 . . . 4 (𝐻 = (2nd𝑅) → (𝐻 ∈ V ↔ (2nd𝑅) ∈ V))
2523, 24mpbiri 258 . . 3 (𝐻 = (2nd𝑅) → 𝐻 ∈ V)
26 eqid 2729 . . . 4 dom dom 𝐻 = dom dom 𝐻
2726ismndo1 37857 . . 3 (𝐻 ∈ V → (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
282, 25, 27mp2b 10 . 2 (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
2922, 28sylibr 234 1 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436   × cxp 5617  dom cdm 5619  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  AbelOpcablo 30488  MndOpcmndo 37850  RingOpscrngo 37878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-ov 7352  df-1st 7924  df-2nd 7925  df-grpo 30437  df-ablo 30489  df-ass 37827  df-exid 37829  df-mgmOLD 37833  df-sgrOLD 37845  df-mndo 37851  df-rngo 37879
This theorem is referenced by:  rngoidmlem  37920  rngo1cl  37923  isdrngo2  37942
  Copyright terms: Public domain W3C validator