Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngomndo Structured version   Visualization version   GIF version

Theorem rngomndo 37929
Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
unmnd.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngomndo (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)

Proof of Theorem rngomndo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (1st𝑅) = (1st𝑅)
2 unmnd.1 . . . 4 𝐻 = (2nd𝑅)
3 eqid 2729 . . . 4 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3rngosm 37894 . . 3 (𝑅 ∈ RingOps → 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅))
51, 2, 3rngoass 37900 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
65ralrimivvva 3183 . . 3 (𝑅 ∈ RingOps → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
71, 2, 3rngoi 37893 . . . 4 (𝑅 ∈ RingOps → (((1st𝑅) ∈ AbelOp ∧ 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)) ∧ (∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦(1st𝑅)𝑧)) = ((𝑥𝐻𝑦)(1st𝑅)(𝑥𝐻𝑧)) ∧ ((𝑥(1st𝑅)𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)(1st𝑅)(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
87simprrd 773 . . 3 (𝑅 ∈ RingOps → ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
92, 1rngorn1 37927 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = dom dom 𝐻)
10 xpid11 5896 . . . . . . . 8 ((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ↔ dom dom 𝐻 = ran (1st𝑅))
1110biimpri 228 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)))
12 feq23 6669 . . . . . . 7 (((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ∧ dom dom 𝐻 = ran (1st𝑅)) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
1311, 12mpancom 688 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
14 raleq 3296 . . . . . . . 8 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1514raleqbi1dv 3311 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1615raleqbi1dv 3311 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
17 raleq 3296 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1817rexeqbi1dv 3312 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1913, 16, 183anbi123d 1438 . . . . 5 (dom dom 𝐻 = ran (1st𝑅) → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
2019eqcoms 2737 . . . 4 (ran (1st𝑅) = dom dom 𝐻 → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
219, 20syl 17 . . 3 (𝑅 ∈ RingOps → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
224, 6, 8, 21mpbir3and 1343 . 2 (𝑅 ∈ RingOps → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
23 fvex 6871 . . . 4 (2nd𝑅) ∈ V
24 eleq1 2816 . . . 4 (𝐻 = (2nd𝑅) → (𝐻 ∈ V ↔ (2nd𝑅) ∈ V))
2523, 24mpbiri 258 . . 3 (𝐻 = (2nd𝑅) → 𝐻 ∈ V)
26 eqid 2729 . . . 4 dom dom 𝐻 = dom dom 𝐻
2726ismndo1 37867 . . 3 (𝐻 ∈ V → (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
282, 25, 27mp2b 10 . 2 (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
2922, 28sylibr 234 1 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   × cxp 5636  dom cdm 5638  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  AbelOpcablo 30473  MndOpcmndo 37860  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-1st 7968  df-2nd 7969  df-grpo 30422  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889
This theorem is referenced by:  rngoidmlem  37930  rngo1cl  37933  isdrngo2  37952
  Copyright terms: Public domain W3C validator