Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngomndo Structured version   Visualization version   GIF version

Theorem rngomndo 34275
Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
unmnd.1 𝐻 = (2nd𝑅)
Assertion
Ref Expression
rngomndo (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)

Proof of Theorem rngomndo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2825 . . . 4 (1st𝑅) = (1st𝑅)
2 unmnd.1 . . . 4 𝐻 = (2nd𝑅)
3 eqid 2825 . . . 4 ran (1st𝑅) = ran (1st𝑅)
41, 2, 3rngosm 34240 . . 3 (𝑅 ∈ RingOps → 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅))
51, 2, 3rngoass 34246 . . . 4 ((𝑅 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑅) ∧ 𝑦 ∈ ran (1st𝑅) ∧ 𝑧 ∈ ran (1st𝑅))) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
65ralrimivvva 3181 . . 3 (𝑅 ∈ RingOps → ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)))
71, 2, 3rngoi 34239 . . . 4 (𝑅 ∈ RingOps → (((1st𝑅) ∈ AbelOp ∧ 𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)) ∧ (∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦(1st𝑅)𝑧)) = ((𝑥𝐻𝑦)(1st𝑅)(𝑥𝐻𝑧)) ∧ ((𝑥(1st𝑅)𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)(1st𝑅)(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
87simprrd 790 . . 3 (𝑅 ∈ RingOps → ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
92, 1rngorn1 34273 . . . 4 (𝑅 ∈ RingOps → ran (1st𝑅) = dom dom 𝐻)
10 xpid11 5583 . . . . . . . 8 ((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ↔ dom dom 𝐻 = ran (1st𝑅))
1110biimpri 220 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)))
12 feq23 6266 . . . . . . 7 (((dom dom 𝐻 × dom dom 𝐻) = (ran (1st𝑅) × ran (1st𝑅)) ∧ dom dom 𝐻 = ran (1st𝑅)) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
1311, 12mpancom 679 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅)))
14 raleq 3350 . . . . . . . 8 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1514raleqbi1dv 3358 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
1615raleqbi1dv 3358 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))))
17 raleq 3350 . . . . . . 7 (dom dom 𝐻 = ran (1st𝑅) → (∀𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1817rexeqbi1dv 3359 . . . . . 6 (dom dom 𝐻 = ran (1st𝑅) → (∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦) ↔ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
1913, 16, 183anbi123d 1564 . . . . 5 (dom dom 𝐻 = ran (1st𝑅) → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
2019eqcoms 2833 . . . 4 (ran (1st𝑅) = dom dom 𝐻 → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
219, 20syl 17 . . 3 (𝑅 ∈ RingOps → ((𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) ↔ (𝐻:(ran (1st𝑅) × ran (1st𝑅))⟶ran (1st𝑅) ∧ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)∀𝑧 ∈ ran (1st𝑅)((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
224, 6, 8, 21mpbir3and 1446 . 2 (𝑅 ∈ RingOps → (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
23 fvex 6450 . . . 4 (2nd𝑅) ∈ V
24 eleq1 2894 . . . 4 (𝐻 = (2nd𝑅) → (𝐻 ∈ V ↔ (2nd𝑅) ∈ V))
2523, 24mpbiri 250 . . 3 (𝐻 = (2nd𝑅) → 𝐻 ∈ V)
26 eqid 2825 . . . 4 dom dom 𝐻 = dom dom 𝐻
2726ismndo1 34213 . . 3 (𝐻 ∈ V → (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
282, 25, 27mp2b 10 . 2 (𝐻 ∈ MndOp ↔ (𝐻:(dom dom 𝐻 × dom dom 𝐻)⟶dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻𝑧 ∈ dom dom 𝐻((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ ∃𝑥 ∈ dom dom 𝐻𝑦 ∈ dom dom 𝐻((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))
2922, 28sylibr 226 1 (𝑅 ∈ RingOps → 𝐻 ∈ MndOp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  wrex 3118  Vcvv 3414   × cxp 5344  dom cdm 5346  ran crn 5347  wf 6123  cfv 6127  (class class class)co 6910  1st c1st 7431  2nd c2nd 7432  AbelOpcablo 27950  MndOpcmndo 34206  RingOpscrngo 34234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fo 6133  df-fv 6135  df-ov 6913  df-1st 7433  df-2nd 7434  df-grpo 27899  df-ablo 27951  df-ass 34183  df-exid 34185  df-mgmOLD 34189  df-sgrOLD 34201  df-mndo 34207  df-rngo 34235
This theorem is referenced by:  rngoidmlem  34276  rngo1cl  34279  isdrngo2  34298
  Copyright terms: Public domain W3C validator