| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > seff | Structured version Visualization version GIF version | ||
| Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| seff.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| Ref | Expression |
|---|---|
| seff | ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seff.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | elpri 4609 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 3 | reeff1 16064 | . . . . . 6 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
| 4 | f1f 6738 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
| 5 | rpssre 12935 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
| 6 | fss 6686 | . . . . . . 7 ⊢ (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ) | |
| 7 | 5, 6 | mpan2 691 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ) |
| 8 | 3, 4, 7 | mp2b 10 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ⟶ℝ |
| 9 | feq23 6651 | . . . . . 6 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) | |
| 10 | 9 | anidms 566 | . . . . 5 ⊢ (𝑆 = ℝ → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) |
| 11 | 8, 10 | mpbiri 258 | . . . 4 ⊢ (𝑆 = ℝ → (exp ↾ ℝ):𝑆⟶𝑆) |
| 12 | reseq2 5934 | . . . . 5 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ)) | |
| 13 | 12 | feq1d 6652 | . . . 4 ⊢ (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℝ):𝑆⟶𝑆)) |
| 14 | 11, 13 | mpbird 257 | . . 3 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆):𝑆⟶𝑆) |
| 15 | eff 16023 | . . . . . 6 ⊢ exp:ℂ⟶ℂ | |
| 16 | frel 6675 | . . . . . . . . 9 ⊢ (exp:ℂ⟶ℂ → Rel exp) | |
| 17 | resdm 5986 | . . . . . . . . 9 ⊢ (Rel exp → (exp ↾ dom exp) = exp) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = exp |
| 19 | 15 | fdmi 6681 | . . . . . . . . 9 ⊢ dom exp = ℂ |
| 20 | 19 | reseq2i 5936 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = (exp ↾ ℂ) |
| 21 | 18, 20 | eqtr3i 2754 | . . . . . . 7 ⊢ exp = (exp ↾ ℂ) |
| 22 | 21 | feq1i 6661 | . . . . . 6 ⊢ (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ) |
| 23 | 15, 22 | mpbi 230 | . . . . 5 ⊢ (exp ↾ ℂ):ℂ⟶ℂ |
| 24 | feq23 6651 | . . . . . 6 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) | |
| 25 | 24 | anidms 566 | . . . . 5 ⊢ (𝑆 = ℂ → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) |
| 26 | 23, 25 | mpbiri 258 | . . . 4 ⊢ (𝑆 = ℂ → (exp ↾ ℂ):𝑆⟶𝑆) |
| 27 | reseq2 5934 | . . . . 5 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ)) | |
| 28 | 27 | feq1d 6652 | . . . 4 ⊢ (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℂ):𝑆⟶𝑆)) |
| 29 | 26, 28 | mpbird 257 | . . 3 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆):𝑆⟶𝑆) |
| 30 | 14, 29 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆⟶𝑆) |
| 31 | 1, 2, 30 | 3syl 18 | 1 ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 {cpr 4587 dom cdm 5631 ↾ cres 5633 Rel wrel 5636 ⟶wf 6495 –1-1→wf1 6496 ℂcc 11042 ℝcr 11043 ℝ+crp 12927 expce 16003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-fac 14215 df-bc 14244 df-hash 14272 df-shft 15009 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-sum 15629 df-ef 16009 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |