![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > seff | Structured version Visualization version GIF version |
Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
Ref | Expression |
---|---|
seff.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
Ref | Expression |
---|---|
seff | ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seff.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | elpri 4337 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
3 | reeff1 15056 | . . . . . 6 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
4 | f1f 6241 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
5 | rpssre 12046 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
6 | fss 6196 | . . . . . . 7 ⊢ (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ) | |
7 | 5, 6 | mpan2 671 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ) |
8 | 3, 4, 7 | mp2b 10 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ⟶ℝ |
9 | feq23 6169 | . . . . . 6 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) | |
10 | 9 | anidms 556 | . . . . 5 ⊢ (𝑆 = ℝ → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) |
11 | 8, 10 | mpbiri 248 | . . . 4 ⊢ (𝑆 = ℝ → (exp ↾ ℝ):𝑆⟶𝑆) |
12 | reseq2 5529 | . . . . 5 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ)) | |
13 | 12 | feq1d 6170 | . . . 4 ⊢ (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℝ):𝑆⟶𝑆)) |
14 | 11, 13 | mpbird 247 | . . 3 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆):𝑆⟶𝑆) |
15 | eff 15018 | . . . . . 6 ⊢ exp:ℂ⟶ℂ | |
16 | frel 6190 | . . . . . . . . 9 ⊢ (exp:ℂ⟶ℂ → Rel exp) | |
17 | resdm 5582 | . . . . . . . . 9 ⊢ (Rel exp → (exp ↾ dom exp) = exp) | |
18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = exp |
19 | 15 | fdmi 6192 | . . . . . . . . 9 ⊢ dom exp = ℂ |
20 | 19 | reseq2i 5531 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = (exp ↾ ℂ) |
21 | 18, 20 | eqtr3i 2795 | . . . . . . 7 ⊢ exp = (exp ↾ ℂ) |
22 | 21 | feq1i 6176 | . . . . . 6 ⊢ (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ) |
23 | 15, 22 | mpbi 220 | . . . . 5 ⊢ (exp ↾ ℂ):ℂ⟶ℂ |
24 | feq23 6169 | . . . . . 6 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) | |
25 | 24 | anidms 556 | . . . . 5 ⊢ (𝑆 = ℂ → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) |
26 | 23, 25 | mpbiri 248 | . . . 4 ⊢ (𝑆 = ℂ → (exp ↾ ℂ):𝑆⟶𝑆) |
27 | reseq2 5529 | . . . . 5 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ)) | |
28 | 27 | feq1d 6170 | . . . 4 ⊢ (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℂ):𝑆⟶𝑆)) |
29 | 26, 28 | mpbird 247 | . . 3 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆):𝑆⟶𝑆) |
30 | 14, 29 | jaoi 846 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆⟶𝑆) |
31 | 1, 2, 30 | 3syl 18 | 1 ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 836 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 {cpr 4318 dom cdm 5249 ↾ cres 5251 Rel wrel 5254 ⟶wf 6027 –1-1→wf1 6028 ℂcc 10136 ℝcr 10137 ℝ+crp 12035 expce 14998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-ico 12386 df-fz 12534 df-fzo 12674 df-fl 12801 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |