![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > seff | Structured version Visualization version GIF version |
Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
Ref | Expression |
---|---|
seff.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
Ref | Expression |
---|---|
seff | ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seff.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | elpri 4457 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
3 | reeff1 15323 | . . . . . 6 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
4 | f1f 6398 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
5 | rpssre 12204 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
6 | fss 6351 | . . . . . . 7 ⊢ (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ) | |
7 | 5, 6 | mpan2 678 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ) |
8 | 3, 4, 7 | mp2b 10 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ⟶ℝ |
9 | feq23 6322 | . . . . . 6 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) | |
10 | 9 | anidms 559 | . . . . 5 ⊢ (𝑆 = ℝ → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) |
11 | 8, 10 | mpbiri 250 | . . . 4 ⊢ (𝑆 = ℝ → (exp ↾ ℝ):𝑆⟶𝑆) |
12 | reseq2 5683 | . . . . 5 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ)) | |
13 | 12 | feq1d 6323 | . . . 4 ⊢ (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℝ):𝑆⟶𝑆)) |
14 | 11, 13 | mpbird 249 | . . 3 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆):𝑆⟶𝑆) |
15 | eff 15285 | . . . . . 6 ⊢ exp:ℂ⟶ℂ | |
16 | frel 6343 | . . . . . . . . 9 ⊢ (exp:ℂ⟶ℂ → Rel exp) | |
17 | resdm 5736 | . . . . . . . . 9 ⊢ (Rel exp → (exp ↾ dom exp) = exp) | |
18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = exp |
19 | 15 | fdmi 6348 | . . . . . . . . 9 ⊢ dom exp = ℂ |
20 | 19 | reseq2i 5685 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = (exp ↾ ℂ) |
21 | 18, 20 | eqtr3i 2798 | . . . . . . 7 ⊢ exp = (exp ↾ ℂ) |
22 | 21 | feq1i 6329 | . . . . . 6 ⊢ (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ) |
23 | 15, 22 | mpbi 222 | . . . . 5 ⊢ (exp ↾ ℂ):ℂ⟶ℂ |
24 | feq23 6322 | . . . . . 6 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) | |
25 | 24 | anidms 559 | . . . . 5 ⊢ (𝑆 = ℂ → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) |
26 | 23, 25 | mpbiri 250 | . . . 4 ⊢ (𝑆 = ℂ → (exp ↾ ℂ):𝑆⟶𝑆) |
27 | reseq2 5683 | . . . . 5 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ)) | |
28 | 27 | feq1d 6323 | . . . 4 ⊢ (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℂ):𝑆⟶𝑆)) |
29 | 26, 28 | mpbird 249 | . . 3 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆):𝑆⟶𝑆) |
30 | 14, 29 | jaoi 843 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆⟶𝑆) |
31 | 1, 2, 30 | 3syl 18 | 1 ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∨ wo 833 = wceq 1507 ∈ wcel 2048 ⊆ wss 3825 {cpr 4437 dom cdm 5400 ↾ cres 5402 Rel wrel 5405 ⟶wf 6178 –1-1→wf1 6179 ℂcc 10325 ℝcr 10326 ℝ+crp 12197 expce 15265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 ax-addf 10406 ax-mulf 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-pm 8201 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-sup 8693 df-inf 8694 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-z 11787 df-uz 12052 df-rp 12198 df-ico 12553 df-fz 12702 df-fzo 12843 df-fl 12970 df-seq 13178 df-exp 13238 df-fac 13442 df-bc 13471 df-hash 13499 df-shft 14277 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-limsup 14679 df-clim 14696 df-rlim 14697 df-sum 14894 df-ef 15271 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |