Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seff Structured version   Visualization version   GIF version

Theorem seff 44298
Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.)
Hypothesis
Ref Expression
seff.s (𝜑𝑆 ∈ {ℝ, ℂ})
Assertion
Ref Expression
seff (𝜑 → (exp ↾ 𝑆):𝑆𝑆)

Proof of Theorem seff
StepHypRef Expression
1 seff.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4613 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 reeff1 16088 . . . . . 6 (exp ↾ ℝ):ℝ–1-1→ℝ+
4 f1f 6756 . . . . . 6 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
5 rpssre 12959 . . . . . . 7 + ⊆ ℝ
6 fss 6704 . . . . . . 7 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
75, 6mpan2 691 . . . . . 6 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ)
83, 4, 7mp2b 10 . . . . 5 (exp ↾ ℝ):ℝ⟶ℝ
9 feq23 6669 . . . . . 6 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
109anidms 566 . . . . 5 (𝑆 = ℝ → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
118, 10mpbiri 258 . . . 4 (𝑆 = ℝ → (exp ↾ ℝ):𝑆𝑆)
12 reseq2 5945 . . . . 5 (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ))
1312feq1d 6670 . . . 4 (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℝ):𝑆𝑆))
1411, 13mpbird 257 . . 3 (𝑆 = ℝ → (exp ↾ 𝑆):𝑆𝑆)
15 eff 16047 . . . . . 6 exp:ℂ⟶ℂ
16 frel 6693 . . . . . . . . 9 (exp:ℂ⟶ℂ → Rel exp)
17 resdm 5997 . . . . . . . . 9 (Rel exp → (exp ↾ dom exp) = exp)
1815, 16, 17mp2b 10 . . . . . . . 8 (exp ↾ dom exp) = exp
1915fdmi 6699 . . . . . . . . 9 dom exp = ℂ
2019reseq2i 5947 . . . . . . . 8 (exp ↾ dom exp) = (exp ↾ ℂ)
2118, 20eqtr3i 2754 . . . . . . 7 exp = (exp ↾ ℂ)
2221feq1i 6679 . . . . . 6 (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ)
2315, 22mpbi 230 . . . . 5 (exp ↾ ℂ):ℂ⟶ℂ
24 feq23 6669 . . . . . 6 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2524anidms 566 . . . . 5 (𝑆 = ℂ → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2623, 25mpbiri 258 . . . 4 (𝑆 = ℂ → (exp ↾ ℂ):𝑆𝑆)
27 reseq2 5945 . . . . 5 (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ))
2827feq1d 6670 . . . 4 (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℂ):𝑆𝑆))
2926, 28mpbird 257 . . 3 (𝑆 = ℂ → (exp ↾ 𝑆):𝑆𝑆)
3014, 29jaoi 857 . 2 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆𝑆)
311, 2, 303syl 18 1 (𝜑 → (exp ↾ 𝑆):𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wss 3914  {cpr 4591  dom cdm 5638  cres 5640  Rel wrel 5643  wf 6507  1-1wf1 6508  cc 11066  cr 11067  +crp 12951  expce 16027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator