Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seff Structured version   Visualization version   GIF version

Theorem seff 40948
Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.)
Hypothesis
Ref Expression
seff.s (𝜑𝑆 ∈ {ℝ, ℂ})
Assertion
Ref Expression
seff (𝜑 → (exp ↾ 𝑆):𝑆𝑆)

Proof of Theorem seff
StepHypRef Expression
1 seff.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4561 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 reeff1 15464 . . . . . 6 (exp ↾ ℝ):ℝ–1-1→ℝ+
4 f1f 6556 . . . . . 6 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
5 rpssre 12384 . . . . . . 7 + ⊆ ℝ
6 fss 6508 . . . . . . 7 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
75, 6mpan2 690 . . . . . 6 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ)
83, 4, 7mp2b 10 . . . . 5 (exp ↾ ℝ):ℝ⟶ℝ
9 feq23 6478 . . . . . 6 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
109anidms 570 . . . . 5 (𝑆 = ℝ → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
118, 10mpbiri 261 . . . 4 (𝑆 = ℝ → (exp ↾ ℝ):𝑆𝑆)
12 reseq2 5826 . . . . 5 (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ))
1312feq1d 6479 . . . 4 (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℝ):𝑆𝑆))
1411, 13mpbird 260 . . 3 (𝑆 = ℝ → (exp ↾ 𝑆):𝑆𝑆)
15 eff 15426 . . . . . 6 exp:ℂ⟶ℂ
16 frel 6499 . . . . . . . . 9 (exp:ℂ⟶ℂ → Rel exp)
17 resdm 5875 . . . . . . . . 9 (Rel exp → (exp ↾ dom exp) = exp)
1815, 16, 17mp2b 10 . . . . . . . 8 (exp ↾ dom exp) = exp
1915fdmi 6505 . . . . . . . . 9 dom exp = ℂ
2019reseq2i 5828 . . . . . . . 8 (exp ↾ dom exp) = (exp ↾ ℂ)
2118, 20eqtr3i 2847 . . . . . . 7 exp = (exp ↾ ℂ)
2221feq1i 6485 . . . . . 6 (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ)
2315, 22mpbi 233 . . . . 5 (exp ↾ ℂ):ℂ⟶ℂ
24 feq23 6478 . . . . . 6 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2524anidms 570 . . . . 5 (𝑆 = ℂ → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2623, 25mpbiri 261 . . . 4 (𝑆 = ℂ → (exp ↾ ℂ):𝑆𝑆)
27 reseq2 5826 . . . . 5 (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ))
2827feq1d 6479 . . . 4 (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℂ):𝑆𝑆))
2926, 28mpbird 260 . . 3 (𝑆 = ℂ → (exp ↾ 𝑆):𝑆𝑆)
3014, 29jaoi 854 . 2 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆𝑆)
311, 2, 303syl 18 1 (𝜑 → (exp ↾ 𝑆):𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844   = wceq 1538  wcel 2114  wss 3908  {cpr 4541  dom cdm 5532  cres 5534  Rel wrel 5537  wf 6330  1-1wf1 6331  cc 10524  cr 10525  +crp 12377  expce 15406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14417  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-limsup 14819  df-clim 14836  df-rlim 14837  df-sum 15034  df-ef 15412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator