![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > seff | Structured version Visualization version GIF version |
Description: Let set π be the real or complex numbers. Then the exponential function restricted to π is a mapping from π to π. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
Ref | Expression |
---|---|
seff.s | β’ (π β π β {β, β}) |
Ref | Expression |
---|---|
seff | β’ (π β (exp βΎ π):πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seff.s | . 2 β’ (π β π β {β, β}) | |
2 | elpri 4650 | . 2 β’ (π β {β, β} β (π = β β¨ π = β)) | |
3 | reeff1 16062 | . . . . . 6 β’ (exp βΎ β):ββ1-1ββ+ | |
4 | f1f 6787 | . . . . . 6 β’ ((exp βΎ β):ββ1-1ββ+ β (exp βΎ β):ββΆβ+) | |
5 | rpssre 12980 | . . . . . . 7 β’ β+ β β | |
6 | fss 6734 | . . . . . . 7 β’ (((exp βΎ β):ββΆβ+ β§ β+ β β) β (exp βΎ β):ββΆβ) | |
7 | 5, 6 | mpan2 689 | . . . . . 6 β’ ((exp βΎ β):ββΆβ+ β (exp βΎ β):ββΆβ) |
8 | 3, 4, 7 | mp2b 10 | . . . . 5 β’ (exp βΎ β):ββΆβ |
9 | feq23 6701 | . . . . . 6 β’ ((π = β β§ π = β) β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) | |
10 | 9 | anidms 567 | . . . . 5 β’ (π = β β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) |
11 | 8, 10 | mpbiri 257 | . . . 4 β’ (π = β β (exp βΎ β):πβΆπ) |
12 | reseq2 5976 | . . . . 5 β’ (π = β β (exp βΎ π) = (exp βΎ β)) | |
13 | 12 | feq1d 6702 | . . . 4 β’ (π = β β ((exp βΎ π):πβΆπ β (exp βΎ β):πβΆπ)) |
14 | 11, 13 | mpbird 256 | . . 3 β’ (π = β β (exp βΎ π):πβΆπ) |
15 | eff 16024 | . . . . . 6 β’ exp:ββΆβ | |
16 | frel 6722 | . . . . . . . . 9 β’ (exp:ββΆβ β Rel exp) | |
17 | resdm 6026 | . . . . . . . . 9 β’ (Rel exp β (exp βΎ dom exp) = exp) | |
18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 β’ (exp βΎ dom exp) = exp |
19 | 15 | fdmi 6729 | . . . . . . . . 9 β’ dom exp = β |
20 | 19 | reseq2i 5978 | . . . . . . . 8 β’ (exp βΎ dom exp) = (exp βΎ β) |
21 | 18, 20 | eqtr3i 2762 | . . . . . . 7 β’ exp = (exp βΎ β) |
22 | 21 | feq1i 6708 | . . . . . 6 β’ (exp:ββΆβ β (exp βΎ β):ββΆβ) |
23 | 15, 22 | mpbi 229 | . . . . 5 β’ (exp βΎ β):ββΆβ |
24 | feq23 6701 | . . . . . 6 β’ ((π = β β§ π = β) β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) | |
25 | 24 | anidms 567 | . . . . 5 β’ (π = β β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) |
26 | 23, 25 | mpbiri 257 | . . . 4 β’ (π = β β (exp βΎ β):πβΆπ) |
27 | reseq2 5976 | . . . . 5 β’ (π = β β (exp βΎ π) = (exp βΎ β)) | |
28 | 27 | feq1d 6702 | . . . 4 β’ (π = β β ((exp βΎ π):πβΆπ β (exp βΎ β):πβΆπ)) |
29 | 26, 28 | mpbird 256 | . . 3 β’ (π = β β (exp βΎ π):πβΆπ) |
30 | 14, 29 | jaoi 855 | . 2 β’ ((π = β β¨ π = β) β (exp βΎ π):πβΆπ) |
31 | 1, 2, 30 | 3syl 18 | 1 β’ (π β (exp βΎ π):πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 845 = wceq 1541 β wcel 2106 β wss 3948 {cpr 4630 dom cdm 5676 βΎ cres 5678 Rel wrel 5681 βΆwf 6539 β1-1βwf1 6540 βcc 11107 βcr 11108 β+crp 12973 expce 16004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-ico 13329 df-fz 13484 df-fzo 13627 df-fl 13756 df-seq 13966 df-exp 14027 df-fac 14233 df-bc 14262 df-hash 14290 df-shft 15013 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 df-rlim 15432 df-sum 15632 df-ef 16010 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |