Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > seff | Structured version Visualization version GIF version |
Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
Ref | Expression |
---|---|
seff.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
Ref | Expression |
---|---|
seff | ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seff.s | . 2 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | elpri 4583 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
3 | reeff1 15829 | . . . . . 6 ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ | |
4 | f1f 6670 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+) | |
5 | rpssre 12737 | . . . . . . 7 ⊢ ℝ+ ⊆ ℝ | |
6 | fss 6617 | . . . . . . 7 ⊢ (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ) | |
7 | 5, 6 | mpan2 688 | . . . . . 6 ⊢ ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ) |
8 | 3, 4, 7 | mp2b 10 | . . . . 5 ⊢ (exp ↾ ℝ):ℝ⟶ℝ |
9 | feq23 6584 | . . . . . 6 ⊢ ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) | |
10 | 9 | anidms 567 | . . . . 5 ⊢ (𝑆 = ℝ → ((exp ↾ ℝ):𝑆⟶𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ)) |
11 | 8, 10 | mpbiri 257 | . . . 4 ⊢ (𝑆 = ℝ → (exp ↾ ℝ):𝑆⟶𝑆) |
12 | reseq2 5886 | . . . . 5 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ)) | |
13 | 12 | feq1d 6585 | . . . 4 ⊢ (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℝ):𝑆⟶𝑆)) |
14 | 11, 13 | mpbird 256 | . . 3 ⊢ (𝑆 = ℝ → (exp ↾ 𝑆):𝑆⟶𝑆) |
15 | eff 15791 | . . . . . 6 ⊢ exp:ℂ⟶ℂ | |
16 | frel 6605 | . . . . . . . . 9 ⊢ (exp:ℂ⟶ℂ → Rel exp) | |
17 | resdm 5936 | . . . . . . . . 9 ⊢ (Rel exp → (exp ↾ dom exp) = exp) | |
18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = exp |
19 | 15 | fdmi 6612 | . . . . . . . . 9 ⊢ dom exp = ℂ |
20 | 19 | reseq2i 5888 | . . . . . . . 8 ⊢ (exp ↾ dom exp) = (exp ↾ ℂ) |
21 | 18, 20 | eqtr3i 2768 | . . . . . . 7 ⊢ exp = (exp ↾ ℂ) |
22 | 21 | feq1i 6591 | . . . . . 6 ⊢ (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ) |
23 | 15, 22 | mpbi 229 | . . . . 5 ⊢ (exp ↾ ℂ):ℂ⟶ℂ |
24 | feq23 6584 | . . . . . 6 ⊢ ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) | |
25 | 24 | anidms 567 | . . . . 5 ⊢ (𝑆 = ℂ → ((exp ↾ ℂ):𝑆⟶𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ)) |
26 | 23, 25 | mpbiri 257 | . . . 4 ⊢ (𝑆 = ℂ → (exp ↾ ℂ):𝑆⟶𝑆) |
27 | reseq2 5886 | . . . . 5 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ)) | |
28 | 27 | feq1d 6585 | . . . 4 ⊢ (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆⟶𝑆 ↔ (exp ↾ ℂ):𝑆⟶𝑆)) |
29 | 26, 28 | mpbird 256 | . . 3 ⊢ (𝑆 = ℂ → (exp ↾ 𝑆):𝑆⟶𝑆) |
30 | 14, 29 | jaoi 854 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆⟶𝑆) |
31 | 1, 2, 30 | 3syl 18 | 1 ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {cpr 4563 dom cdm 5589 ↾ cres 5591 Rel wrel 5594 ⟶wf 6429 –1-1→wf1 6430 ℂcc 10869 ℝcr 10870 ℝ+crp 12730 expce 15771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |