![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > seff | Structured version Visualization version GIF version |
Description: Let set π be the real or complex numbers. Then the exponential function restricted to π is a mapping from π to π. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
Ref | Expression |
---|---|
seff.s | β’ (π β π β {β, β}) |
Ref | Expression |
---|---|
seff | β’ (π β (exp βΎ π):πβΆπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seff.s | . 2 β’ (π β π β {β, β}) | |
2 | elpri 4646 | . 2 β’ (π β {β, β} β (π = β β¨ π = β)) | |
3 | reeff1 16088 | . . . . . 6 β’ (exp βΎ β):ββ1-1ββ+ | |
4 | f1f 6787 | . . . . . 6 β’ ((exp βΎ β):ββ1-1ββ+ β (exp βΎ β):ββΆβ+) | |
5 | rpssre 13005 | . . . . . . 7 β’ β+ β β | |
6 | fss 6733 | . . . . . . 7 β’ (((exp βΎ β):ββΆβ+ β§ β+ β β) β (exp βΎ β):ββΆβ) | |
7 | 5, 6 | mpan2 690 | . . . . . 6 β’ ((exp βΎ β):ββΆβ+ β (exp βΎ β):ββΆβ) |
8 | 3, 4, 7 | mp2b 10 | . . . . 5 β’ (exp βΎ β):ββΆβ |
9 | feq23 6700 | . . . . . 6 β’ ((π = β β§ π = β) β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) | |
10 | 9 | anidms 566 | . . . . 5 β’ (π = β β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) |
11 | 8, 10 | mpbiri 258 | . . . 4 β’ (π = β β (exp βΎ β):πβΆπ) |
12 | reseq2 5974 | . . . . 5 β’ (π = β β (exp βΎ π) = (exp βΎ β)) | |
13 | 12 | feq1d 6701 | . . . 4 β’ (π = β β ((exp βΎ π):πβΆπ β (exp βΎ β):πβΆπ)) |
14 | 11, 13 | mpbird 257 | . . 3 β’ (π = β β (exp βΎ π):πβΆπ) |
15 | eff 16049 | . . . . . 6 β’ exp:ββΆβ | |
16 | frel 6721 | . . . . . . . . 9 β’ (exp:ββΆβ β Rel exp) | |
17 | resdm 6024 | . . . . . . . . 9 β’ (Rel exp β (exp βΎ dom exp) = exp) | |
18 | 15, 16, 17 | mp2b 10 | . . . . . . . 8 β’ (exp βΎ dom exp) = exp |
19 | 15 | fdmi 6728 | . . . . . . . . 9 β’ dom exp = β |
20 | 19 | reseq2i 5976 | . . . . . . . 8 β’ (exp βΎ dom exp) = (exp βΎ β) |
21 | 18, 20 | eqtr3i 2757 | . . . . . . 7 β’ exp = (exp βΎ β) |
22 | 21 | feq1i 6707 | . . . . . 6 β’ (exp:ββΆβ β (exp βΎ β):ββΆβ) |
23 | 15, 22 | mpbi 229 | . . . . 5 β’ (exp βΎ β):ββΆβ |
24 | feq23 6700 | . . . . . 6 β’ ((π = β β§ π = β) β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) | |
25 | 24 | anidms 566 | . . . . 5 β’ (π = β β ((exp βΎ β):πβΆπ β (exp βΎ β):ββΆβ)) |
26 | 23, 25 | mpbiri 258 | . . . 4 β’ (π = β β (exp βΎ β):πβΆπ) |
27 | reseq2 5974 | . . . . 5 β’ (π = β β (exp βΎ π) = (exp βΎ β)) | |
28 | 27 | feq1d 6701 | . . . 4 β’ (π = β β ((exp βΎ π):πβΆπ β (exp βΎ β):πβΆπ)) |
29 | 26, 28 | mpbird 257 | . . 3 β’ (π = β β (exp βΎ π):πβΆπ) |
30 | 14, 29 | jaoi 856 | . 2 β’ ((π = β β¨ π = β) β (exp βΎ π):πβΆπ) |
31 | 1, 2, 30 | 3syl 18 | 1 β’ (π β (exp βΎ π):πβΆπ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β¨ wo 846 = wceq 1534 β wcel 2099 β wss 3944 {cpr 4626 dom cdm 5672 βΎ cres 5674 Rel wrel 5677 βΆwf 6538 β1-1βwf1 6539 βcc 11128 βcr 11129 β+crp 12998 expce 16029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-pm 8839 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-n0 12495 df-z 12581 df-uz 12845 df-rp 12999 df-ico 13354 df-fz 13509 df-fzo 13652 df-fl 13781 df-seq 13991 df-exp 14051 df-fac 14257 df-bc 14286 df-hash 14314 df-shft 15038 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-limsup 15439 df-clim 15456 df-rlim 15457 df-sum 15657 df-ef 16035 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |