Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seff Structured version   Visualization version   GIF version

Theorem seff 44305
Description: Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.)
Hypothesis
Ref Expression
seff.s (𝜑𝑆 ∈ {ℝ, ℂ})
Assertion
Ref Expression
seff (𝜑 → (exp ↾ 𝑆):𝑆𝑆)

Proof of Theorem seff
StepHypRef Expression
1 seff.s . 2 (𝜑𝑆 ∈ {ℝ, ℂ})
2 elpri 4616 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
3 reeff1 16095 . . . . . 6 (exp ↾ ℝ):ℝ–1-1→ℝ+
4 f1f 6759 . . . . . 6 ((exp ↾ ℝ):ℝ–1-1→ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ+)
5 rpssre 12966 . . . . . . 7 + ⊆ ℝ
6 fss 6707 . . . . . . 7 (((exp ↾ ℝ):ℝ⟶ℝ+ ∧ ℝ+ ⊆ ℝ) → (exp ↾ ℝ):ℝ⟶ℝ)
75, 6mpan2 691 . . . . . 6 ((exp ↾ ℝ):ℝ⟶ℝ+ → (exp ↾ ℝ):ℝ⟶ℝ)
83, 4, 7mp2b 10 . . . . 5 (exp ↾ ℝ):ℝ⟶ℝ
9 feq23 6672 . . . . . 6 ((𝑆 = ℝ ∧ 𝑆 = ℝ) → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
109anidms 566 . . . . 5 (𝑆 = ℝ → ((exp ↾ ℝ):𝑆𝑆 ↔ (exp ↾ ℝ):ℝ⟶ℝ))
118, 10mpbiri 258 . . . 4 (𝑆 = ℝ → (exp ↾ ℝ):𝑆𝑆)
12 reseq2 5948 . . . . 5 (𝑆 = ℝ → (exp ↾ 𝑆) = (exp ↾ ℝ))
1312feq1d 6673 . . . 4 (𝑆 = ℝ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℝ):𝑆𝑆))
1411, 13mpbird 257 . . 3 (𝑆 = ℝ → (exp ↾ 𝑆):𝑆𝑆)
15 eff 16054 . . . . . 6 exp:ℂ⟶ℂ
16 frel 6696 . . . . . . . . 9 (exp:ℂ⟶ℂ → Rel exp)
17 resdm 6000 . . . . . . . . 9 (Rel exp → (exp ↾ dom exp) = exp)
1815, 16, 17mp2b 10 . . . . . . . 8 (exp ↾ dom exp) = exp
1915fdmi 6702 . . . . . . . . 9 dom exp = ℂ
2019reseq2i 5950 . . . . . . . 8 (exp ↾ dom exp) = (exp ↾ ℂ)
2118, 20eqtr3i 2755 . . . . . . 7 exp = (exp ↾ ℂ)
2221feq1i 6682 . . . . . 6 (exp:ℂ⟶ℂ ↔ (exp ↾ ℂ):ℂ⟶ℂ)
2315, 22mpbi 230 . . . . 5 (exp ↾ ℂ):ℂ⟶ℂ
24 feq23 6672 . . . . . 6 ((𝑆 = ℂ ∧ 𝑆 = ℂ) → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2524anidms 566 . . . . 5 (𝑆 = ℂ → ((exp ↾ ℂ):𝑆𝑆 ↔ (exp ↾ ℂ):ℂ⟶ℂ))
2623, 25mpbiri 258 . . . 4 (𝑆 = ℂ → (exp ↾ ℂ):𝑆𝑆)
27 reseq2 5948 . . . . 5 (𝑆 = ℂ → (exp ↾ 𝑆) = (exp ↾ ℂ))
2827feq1d 6673 . . . 4 (𝑆 = ℂ → ((exp ↾ 𝑆):𝑆𝑆 ↔ (exp ↾ ℂ):𝑆𝑆))
2926, 28mpbird 257 . . 3 (𝑆 = ℂ → (exp ↾ 𝑆):𝑆𝑆)
3014, 29jaoi 857 . 2 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → (exp ↾ 𝑆):𝑆𝑆)
311, 2, 303syl 18 1 (𝜑 → (exp ↾ 𝑆):𝑆𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wss 3917  {cpr 4594  dom cdm 5641  cres 5643  Rel wrel 5646  wf 6510  1-1wf1 6511  cc 11073  cr 11074  +crp 12958  expce 16034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator