![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq23i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq23i.1 | ⊢ 𝐴 = 𝐶 |
feq23i.2 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
3 | feq23 6731 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-fn 6576 df-f 6577 |
This theorem is referenced by: ftpg 7190 hashf 14387 funcoppc 17939 cnextfval 24091 uhgr0 29108 lfgredgge2 29159 mbfmvolf 34231 eulerpartlemt 34336 ismgmOLD 37810 elghomOLD 37847 tendoset 40716 pwssplit4 43046 gricushgr 47770 uspgrlimlem2 47813 lincdifsn 48153 |
Copyright terms: Public domain | W3C validator |