MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23i Structured version   Visualization version   GIF version

Theorem feq23i 6639
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq23i.1 𝐴 = 𝐶
feq23i.2 𝐵 = 𝐷
Assertion
Ref Expression
feq23i (𝐹:𝐴𝐵𝐹:𝐶𝐷)

Proof of Theorem feq23i
StepHypRef Expression
1 feq23i.1 . 2 𝐴 = 𝐶
2 feq23i.2 . 2 𝐵 = 𝐷
3 feq23 6629 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
41, 2, 3mp2an 689 1 (𝐹:𝐴𝐵𝐹:𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wf 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-in 3904  df-ss 3914  df-fn 6476  df-f 6477
This theorem is referenced by:  ftpg  7078  hashf  14145  funcoppc  17679  cnextfval  23311  uhgr0  27673  lfgredgge2  27724  mbfmvolf  32474  eulerpartlemt  32579  ismgmOLD  36106  elghomOLD  36143  tendoset  39020  pwssplit4  41165  isomushgr  45618  lincdifsn  46105
  Copyright terms: Public domain W3C validator