MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23i Structured version   Visualization version   GIF version

Theorem feq23i 6578
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq23i.1 𝐴 = 𝐶
feq23i.2 𝐵 = 𝐷
Assertion
Ref Expression
feq23i (𝐹:𝐴𝐵𝐹:𝐶𝐷)

Proof of Theorem feq23i
StepHypRef Expression
1 feq23i.1 . 2 𝐴 = 𝐶
2 feq23i.2 . 2 𝐵 = 𝐷
3 feq23 6568 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
41, 2, 3mp2an 688 1 (𝐹:𝐴𝐵𝐹:𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-fn 6421  df-f 6422
This theorem is referenced by:  ftpg  7010  hashf  13980  funcoppc  17506  cnextfval  23121  uhgr0  27346  lfgredgge2  27397  mbfmvolf  32133  eulerpartlemt  32238  ismgmOLD  35935  elghomOLD  35972  tendoset  38700  pwssplit4  40830  isomushgr  45166  lincdifsn  45653
  Copyright terms: Public domain W3C validator