Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq23i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq23i.1 | ⊢ 𝐴 = 𝐶 |
feq23i.2 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
3 | feq23 6584 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-fn 6436 df-f 6437 |
This theorem is referenced by: ftpg 7028 hashf 14052 funcoppc 17590 cnextfval 23213 uhgr0 27443 lfgredgge2 27494 mbfmvolf 32233 eulerpartlemt 32338 ismgmOLD 36008 elghomOLD 36045 tendoset 38773 pwssplit4 40914 isomushgr 45278 lincdifsn 45765 |
Copyright terms: Public domain | W3C validator |