MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23i Structured version   Visualization version   GIF version

Theorem feq23i 6664
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq23i.1 𝐴 = 𝐶
feq23i.2 𝐵 = 𝐷
Assertion
Ref Expression
feq23i (𝐹:𝐴𝐵𝐹:𝐶𝐷)

Proof of Theorem feq23i
StepHypRef Expression
1 feq23i.1 . 2 𝐴 = 𝐶
2 feq23i.2 . 2 𝐵 = 𝐷
3 feq23 6651 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
41, 2, 3mp2an 692 1 (𝐹:𝐴𝐵𝐹:𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wf 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3928  df-fn 6502  df-f 6503
This theorem is referenced by:  ftpg  7110  hashf  14279  funcoppc  17813  cnextfval  23925  uhgr0  28976  lfgredgge2  29027  mbfmvolf  34230  eulerpartlemt  34335  ismgmOLD  37817  elghomOLD  37854  tendoset  40726  pwssplit4  43051  gricushgr  47890  uspgrlimlem2  47961  lincdifsn  48386
  Copyright terms: Public domain W3C validator