| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq23i.1 | ⊢ 𝐴 = 𝐶 |
| feq23i.2 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
| 2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
| 3 | feq23 6627 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⟶wf 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 df-fn 6479 df-f 6480 |
| This theorem is referenced by: ftpg 7084 hashf 14240 funcoppc 17777 cnextfval 23972 uhgr0 29046 lfgredgge2 29097 mbfmvolf 34271 eulerpartlemt 34376 ismgmOLD 37890 elghomOLD 37927 tendoset 40798 pwssplit4 43122 gricushgr 47948 uspgrlimlem2 48020 lincdifsn 48456 |
| Copyright terms: Public domain | W3C validator |