| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq23i.1 | ⊢ 𝐴 = 𝐶 |
| feq23i.2 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
| 2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
| 3 | feq23 6689 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ⟶wf 6527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-fn 6534 df-f 6535 |
| This theorem is referenced by: ftpg 7146 hashf 14356 funcoppc 17888 cnextfval 24000 uhgr0 29052 lfgredgge2 29103 mbfmvolf 34298 eulerpartlemt 34403 ismgmOLD 37874 elghomOLD 37911 tendoset 40778 pwssplit4 43113 gricushgr 47930 uspgrlimlem2 48001 lincdifsn 48400 |
| Copyright terms: Public domain | W3C validator |