![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq23i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq23i.1 | ⊢ 𝐴 = 𝐶 |
feq23i.2 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
3 | feq23 6720 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 df-fn 6566 df-f 6567 |
This theorem is referenced by: ftpg 7176 hashf 14374 funcoppc 17926 cnextfval 24086 uhgr0 29105 lfgredgge2 29156 mbfmvolf 34248 eulerpartlemt 34353 ismgmOLD 37837 elghomOLD 37874 tendoset 40742 pwssplit4 43078 gricushgr 47824 uspgrlimlem2 47892 lincdifsn 48270 |
Copyright terms: Public domain | W3C validator |