| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq23i | Structured version Visualization version GIF version | ||
| Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq23i.1 | ⊢ 𝐴 = 𝐶 |
| feq23i.2 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| feq23i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq23i.1 | . 2 ⊢ 𝐴 = 𝐶 | |
| 2 | feq23i.2 | . 2 ⊢ 𝐵 = 𝐷 | |
| 3 | feq23 6640 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐹:𝐶⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-fn 6492 df-f 6493 |
| This theorem is referenced by: ftpg 7098 hashf 14252 funcoppc 17790 cnextfval 23997 uhgr0 29072 lfgredgge2 29123 mbfmvolf 34351 eulerpartlemt 34456 ismgmOLD 37963 elghomOLD 38000 tendoset 40931 pwssplit4 43246 gricushgr 48079 uspgrlimlem2 48151 lincdifsn 48586 |
| Copyright terms: Public domain | W3C validator |