MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23i Structured version   Visualization version   GIF version

Theorem feq23i 6682
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq23i.1 𝐴 = 𝐶
feq23i.2 𝐵 = 𝐷
Assertion
Ref Expression
feq23i (𝐹:𝐴𝐵𝐹:𝐶𝐷)

Proof of Theorem feq23i
StepHypRef Expression
1 feq23i.1 . 2 𝐴 = 𝐶
2 feq23i.2 . 2 𝐵 = 𝐷
3 feq23 6669 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
41, 2, 3mp2an 692 1 (𝐹:𝐴𝐵𝐹:𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3931  df-fn 6514  df-f 6515
This theorem is referenced by:  ftpg  7128  hashf  14303  funcoppc  17837  cnextfval  23949  uhgr0  29000  lfgredgge2  29051  mbfmvolf  34257  eulerpartlemt  34362  ismgmOLD  37844  elghomOLD  37881  tendoset  40753  pwssplit4  43078  gricushgr  47917  uspgrlimlem2  47988  lincdifsn  48413
  Copyright terms: Public domain W3C validator