Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismgmOLD Structured version   Visualization version   GIF version

Theorem ismgmOLD 35143
Description: Obsolete version of ismgm 17853 as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
ismgmOLD.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
ismgmOLD (𝐺𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))

Proof of Theorem ismgmOLD
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 6495 . . . . 5 (𝑔 = 𝐺 → (𝑔:(𝑡 × 𝑡)⟶𝑡𝐺:(𝑡 × 𝑡)⟶𝑡))
21exbidv 1922 . . . 4 (𝑔 = 𝐺 → (∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡 ↔ ∃𝑡 𝐺:(𝑡 × 𝑡)⟶𝑡))
3 df-mgmOLD 35142 . . . 4 Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡}
42, 3elab2g 3668 . . 3 (𝐺𝐴 → (𝐺 ∈ Magma ↔ ∃𝑡 𝐺:(𝑡 × 𝑡)⟶𝑡))
5 f00 6561 . . . . . . . 8 (𝐺:(∅ × ∅)⟶∅ ↔ (𝐺 = ∅ ∧ (∅ × ∅) = ∅))
6 dmeq 5772 . . . . . . . . . 10 (𝐺 = ∅ → dom 𝐺 = dom ∅)
7 dmeq 5772 . . . . . . . . . . 11 (dom 𝐺 = dom ∅ → dom dom 𝐺 = dom dom ∅)
8 dm0 5790 . . . . . . . . . . . . 13 dom ∅ = ∅
98dmeqi 5773 . . . . . . . . . . . 12 dom dom ∅ = dom ∅
109, 8eqtri 2844 . . . . . . . . . . 11 dom dom ∅ = ∅
117, 10syl6req 2873 . . . . . . . . . 10 (dom 𝐺 = dom ∅ → ∅ = dom dom 𝐺)
126, 11syl 17 . . . . . . . . 9 (𝐺 = ∅ → ∅ = dom dom 𝐺)
1312adantr 483 . . . . . . . 8 ((𝐺 = ∅ ∧ (∅ × ∅) = ∅) → ∅ = dom dom 𝐺)
145, 13sylbi 219 . . . . . . 7 (𝐺:(∅ × ∅)⟶∅ → ∅ = dom dom 𝐺)
15 xpeq12 5580 . . . . . . . . . 10 ((𝑡 = ∅ ∧ 𝑡 = ∅) → (𝑡 × 𝑡) = (∅ × ∅))
1615anidms 569 . . . . . . . . 9 (𝑡 = ∅ → (𝑡 × 𝑡) = (∅ × ∅))
17 feq23 6498 . . . . . . . . 9 (((𝑡 × 𝑡) = (∅ × ∅) ∧ 𝑡 = ∅) → (𝐺:(𝑡 × 𝑡)⟶𝑡𝐺:(∅ × ∅)⟶∅))
1816, 17mpancom 686 . . . . . . . 8 (𝑡 = ∅ → (𝐺:(𝑡 × 𝑡)⟶𝑡𝐺:(∅ × ∅)⟶∅))
19 eqeq1 2825 . . . . . . . 8 (𝑡 = ∅ → (𝑡 = dom dom 𝐺 ↔ ∅ = dom dom 𝐺))
2018, 19imbi12d 347 . . . . . . 7 (𝑡 = ∅ → ((𝐺:(𝑡 × 𝑡)⟶𝑡𝑡 = dom dom 𝐺) ↔ (𝐺:(∅ × ∅)⟶∅ → ∅ = dom dom 𝐺)))
2114, 20mpbiri 260 . . . . . 6 (𝑡 = ∅ → (𝐺:(𝑡 × 𝑡)⟶𝑡𝑡 = dom dom 𝐺))
22 fdm 6522 . . . . . . . 8 (𝐺:(𝑡 × 𝑡)⟶𝑡 → dom 𝐺 = (𝑡 × 𝑡))
23 dmeq 5772 . . . . . . . 8 (dom 𝐺 = (𝑡 × 𝑡) → dom dom 𝐺 = dom (𝑡 × 𝑡))
24 df-ne 3017 . . . . . . . . . . . 12 (𝑡 ≠ ∅ ↔ ¬ 𝑡 = ∅)
25 dmxp 5799 . . . . . . . . . . . 12 (𝑡 ≠ ∅ → dom (𝑡 × 𝑡) = 𝑡)
2624, 25sylbir 237 . . . . . . . . . . 11 𝑡 = ∅ → dom (𝑡 × 𝑡) = 𝑡)
2726eqeq1d 2823 . . . . . . . . . 10 𝑡 = ∅ → (dom (𝑡 × 𝑡) = dom dom 𝐺𝑡 = dom dom 𝐺))
2827biimpcd 251 . . . . . . . . 9 (dom (𝑡 × 𝑡) = dom dom 𝐺 → (¬ 𝑡 = ∅ → 𝑡 = dom dom 𝐺))
2928eqcoms 2829 . . . . . . . 8 (dom dom 𝐺 = dom (𝑡 × 𝑡) → (¬ 𝑡 = ∅ → 𝑡 = dom dom 𝐺))
3022, 23, 293syl 18 . . . . . . 7 (𝐺:(𝑡 × 𝑡)⟶𝑡 → (¬ 𝑡 = ∅ → 𝑡 = dom dom 𝐺))
3130com12 32 . . . . . 6 𝑡 = ∅ → (𝐺:(𝑡 × 𝑡)⟶𝑡𝑡 = dom dom 𝐺))
3221, 31pm2.61i 184 . . . . 5 (𝐺:(𝑡 × 𝑡)⟶𝑡𝑡 = dom dom 𝐺)
3332pm4.71ri 563 . . . 4 (𝐺:(𝑡 × 𝑡)⟶𝑡 ↔ (𝑡 = dom dom 𝐺𝐺:(𝑡 × 𝑡)⟶𝑡))
3433exbii 1848 . . 3 (∃𝑡 𝐺:(𝑡 × 𝑡)⟶𝑡 ↔ ∃𝑡(𝑡 = dom dom 𝐺𝐺:(𝑡 × 𝑡)⟶𝑡))
354, 34syl6bb 289 . 2 (𝐺𝐴 → (𝐺 ∈ Magma ↔ ∃𝑡(𝑡 = dom dom 𝐺𝐺:(𝑡 × 𝑡)⟶𝑡)))
36 dmexg 7613 . . 3 (𝐺𝐴 → dom 𝐺 ∈ V)
37 dmexg 7613 . . 3 (dom 𝐺 ∈ V → dom dom 𝐺 ∈ V)
38 xpeq12 5580 . . . . . . 7 ((𝑡 = dom dom 𝐺𝑡 = dom dom 𝐺) → (𝑡 × 𝑡) = (dom dom 𝐺 × dom dom 𝐺))
3938anidms 569 . . . . . 6 (𝑡 = dom dom 𝐺 → (𝑡 × 𝑡) = (dom dom 𝐺 × dom dom 𝐺))
40 feq23 6498 . . . . . 6 (((𝑡 × 𝑡) = (dom dom 𝐺 × dom dom 𝐺) ∧ 𝑡 = dom dom 𝐺) → (𝐺:(𝑡 × 𝑡)⟶𝑡𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
4139, 40mpancom 686 . . . . 5 (𝑡 = dom dom 𝐺 → (𝐺:(𝑡 × 𝑡)⟶𝑡𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺))
42 ismgmOLD.1 . . . . . . . 8 𝑋 = dom dom 𝐺
4342eqcomi 2830 . . . . . . 7 dom dom 𝐺 = 𝑋
4443, 43xpeq12i 5583 . . . . . 6 (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)
4544, 43feq23i 6508 . . . . 5 (𝐺:(dom dom 𝐺 × dom dom 𝐺)⟶dom dom 𝐺𝐺:(𝑋 × 𝑋)⟶𝑋)
4641, 45syl6bb 289 . . . 4 (𝑡 = dom dom 𝐺 → (𝐺:(𝑡 × 𝑡)⟶𝑡𝐺:(𝑋 × 𝑋)⟶𝑋))
4746ceqsexgv 3647 . . 3 (dom dom 𝐺 ∈ V → (∃𝑡(𝑡 = dom dom 𝐺𝐺:(𝑡 × 𝑡)⟶𝑡) ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
4836, 37, 473syl 18 . 2 (𝐺𝐴 → (∃𝑡(𝑡 = dom dom 𝐺𝐺:(𝑡 × 𝑡)⟶𝑡) ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
4935, 48bitrd 281 1 (𝐺𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3016  Vcvv 3494  c0 4291   × cxp 5553  dom cdm 5555  wf 6351  Magmacmagm 35141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-fun 6357  df-fn 6358  df-f 6359  df-mgmOLD 35142
This theorem is referenced by:  clmgmOLD  35144  opidonOLD  35145  issmgrpOLD  35156
  Copyright terms: Public domain W3C validator