Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > feq1d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by NM, 19-Feb-2008.) |
Ref | Expression |
---|---|
feq1d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
feq1d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1d.1 | . 2 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | feq1 6526 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
Copyright terms: Public domain | W3C validator |