MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fint Structured version   Visualization version   GIF version

Theorem fint 6800
Description: Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fint.1 𝐵 ≠ ∅
Assertion
Ref Expression
fint (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fint
StepHypRef Expression
1 ssint 4988 . . . 4 (ran 𝐹 𝐵 ↔ ∀𝑥𝐵 ran 𝐹𝑥)
21anbi2i 622 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
3 fint.1 . . . 4 𝐵 ≠ ∅
4 r19.28zv 4524 . . . 4 (𝐵 ≠ ∅ → (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥)))
53, 4ax-mp 5 . . 3 (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
62, 5bitr4i 278 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
7 df-f 6577 . 2 (𝐹:𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵))
8 df-f 6577 . . 3 (𝐹:𝐴𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
98ralbii 3099 . 2 (∀𝑥𝐵 𝐹:𝐴𝑥 ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
106, 7, 93bitr4i 303 1 (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wne 2946  wral 3067  wss 3976  c0 4352   cint 4970  ran crn 5701   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-int 4971  df-f 6577
This theorem is referenced by:  chintcli  31363
  Copyright terms: Public domain W3C validator