![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fint | Structured version Visualization version GIF version |
Description: Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fint.1 | ⊢ 𝐵 ≠ ∅ |
Ref | Expression |
---|---|
fint | ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4712 | . . . 4 ⊢ (ran 𝐹 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥) | |
2 | 1 | anbi2i 618 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
3 | fint.1 | . . . 4 ⊢ 𝐵 ≠ ∅ | |
4 | r19.28zv 4287 | . . . 4 ⊢ (𝐵 ≠ ∅ → (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
6 | 2, 5 | bitr4i 270 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
7 | df-f 6126 | . 2 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵)) | |
8 | df-f 6126 | . . 3 ⊢ (𝐹:𝐴⟶𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) | |
9 | 8 | ralbii 3188 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥 ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
10 | 6, 7, 9 | 3bitr4i 295 | 1 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 ≠ wne 2998 ∀wral 3116 ⊆ wss 3797 ∅c0 4143 ∩ cint 4696 ran crn 5342 Fn wfn 6117 ⟶wf 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-v 3415 df-dif 3800 df-in 3804 df-ss 3811 df-nul 4144 df-int 4697 df-f 6126 |
This theorem is referenced by: chintcli 28744 |
Copyright terms: Public domain | W3C validator |