Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fint | Structured version Visualization version GIF version |
Description: Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fint.1 | ⊢ 𝐵 ≠ ∅ |
Ref | Expression |
---|---|
fint | ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4895 | . . . 4 ⊢ (ran 𝐹 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥) | |
2 | 1 | anbi2i 623 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
3 | fint.1 | . . . 4 ⊢ 𝐵 ≠ ∅ | |
4 | r19.28zv 4431 | . . . 4 ⊢ (𝐵 ≠ ∅ → (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
6 | 2, 5 | bitr4i 277 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
7 | df-f 6437 | . 2 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵)) | |
8 | df-f 6437 | . . 3 ⊢ (𝐹:𝐴⟶𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) | |
9 | 8 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥 ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
10 | 6, 7, 9 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ≠ wne 2943 ∀wral 3064 ⊆ wss 3887 ∅c0 4256 ∩ cint 4879 ran crn 5590 Fn wfn 6428 ⟶wf 6429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-int 4880 df-f 6437 |
This theorem is referenced by: chintcli 29693 |
Copyright terms: Public domain | W3C validator |