| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fint | Structured version Visualization version GIF version | ||
| Description: Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fint.1 | ⊢ 𝐵 ≠ ∅ |
| Ref | Expression |
|---|---|
| fint | ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4945 | . . . 4 ⊢ (ran 𝐹 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥) | |
| 2 | 1 | anbi2i 623 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
| 3 | fint.1 | . . . 4 ⊢ 𝐵 ≠ ∅ | |
| 4 | r19.28zv 4481 | . . . 4 ⊢ (𝐵 ≠ ∅ → (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
| 6 | 2, 5 | bitr4i 278 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
| 7 | df-f 6540 | . 2 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵)) | |
| 8 | df-f 6540 | . . 3 ⊢ (𝐹:𝐴⟶𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) | |
| 9 | 8 | ralbii 3083 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥 ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
| 10 | 6, 7, 9 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ≠ wne 2933 ∀wral 3052 ⊆ wss 3931 ∅c0 4313 ∩ cint 4927 ran crn 5660 Fn wfn 6531 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-v 3466 df-dif 3934 df-ss 3948 df-nul 4314 df-int 4928 df-f 6540 |
| This theorem is referenced by: chintcli 31317 |
| Copyright terms: Public domain | W3C validator |