MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin Structured version   Visualization version   GIF version

Theorem fin 6787
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
fin (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹:𝐴𝐵𝐹:𝐴𝐶))

Proof of Theorem fin
StepHypRef Expression
1 ssin 4238 . . . 4 ((ran 𝐹𝐵 ∧ ran 𝐹𝐶) ↔ ran 𝐹 ⊆ (𝐵𝐶))
21anbi2i 623 . . 3 ((𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ ran 𝐹𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
3 anandi 676 . . 3 ((𝐹 Fn 𝐴 ∧ (ran 𝐹𝐵 ∧ ran 𝐹𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
42, 3bitr3i 277 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
5 df-f 6564 . 2 (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵𝐶)))
6 df-f 6564 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
7 df-f 6564 . . 3 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶))
86, 7anbi12i 628 . 2 ((𝐹:𝐴𝐵𝐹:𝐴𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐶)))
94, 5, 83bitr4i 303 1 (𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹:𝐴𝐵𝐹:𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  cin 3949  wss 3950  ran crn 5685   Fn wfn 6555  wf 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-in 3957  df-ss 3967  df-f 6564
This theorem is referenced by:  umgrislfupgr  29141  usgrislfuspgr  29205  maprnin  32743  reprinrn  34634  reprinfz1  34638  inmap  45219
  Copyright terms: Public domain W3C validator