| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin | Structured version Visualization version GIF version | ||
| Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fin | ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐹:𝐴⟶𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssin 4238 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | 1 | anbi2i 623 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
| 3 | anandi 676 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
| 5 | df-f 6564 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) | |
| 6 | df-f 6564 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 7 | df-f 6564 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
| 8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹:𝐴⟶𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
| 9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐹:𝐴⟶𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3949 ⊆ wss 3950 ran crn 5685 Fn wfn 6555 ⟶wf 6556 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3957 df-ss 3967 df-f 6564 |
| This theorem is referenced by: umgrislfupgr 29141 usgrislfuspgr 29205 maprnin 32743 reprinrn 34634 reprinfz1 34638 inmap 45219 |
| Copyright terms: Public domain | W3C validator |