![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin | Structured version Visualization version GIF version |
Description: Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fin | ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐹:𝐴⟶𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssin 4260 | . . . 4 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ↔ ran 𝐹 ⊆ (𝐵 ∩ 𝐶)) | |
2 | 1 | anbi2i 622 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) |
3 | anandi 675 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ (ran 𝐹 ⊆ 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) | |
4 | 2, 3 | bitr3i 277 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶)) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
5 | df-f 6577 | . 2 ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ (𝐵 ∩ 𝐶))) | |
6 | df-f 6577 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
7 | df-f 6577 | . . 3 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶)) | |
8 | 6, 7 | anbi12i 627 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐹:𝐴⟶𝐶) ↔ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ∧ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐶))) |
9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (𝐹:𝐴⟶(𝐵 ∩ 𝐶) ↔ (𝐹:𝐴⟶𝐵 ∧ 𝐹:𝐴⟶𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∩ cin 3975 ⊆ wss 3976 ran crn 5701 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-f 6577 |
This theorem is referenced by: umgrislfupgr 29158 usgrislfuspgr 29222 maprnin 32745 reprinrn 34595 reprinfz1 34599 inmap 45116 |
Copyright terms: Public domain | W3C validator |