MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvdisj Structured version   Visualization version   GIF version

Theorem fimacnvdisj 6738
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 5649 . . . 4 ran 𝐹 = dom 𝐹
2 frn 6695 . . . . 5 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
32adantr 480 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → ran 𝐹𝐵)
41, 3eqsstrrid 3986 . . 3 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → dom 𝐹𝐵)
5 ssdisj 4423 . . 3 ((dom 𝐹𝐵 ∧ (𝐵𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
64, 5sylancom 588 . 2 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (dom 𝐹𝐶) = ∅)
7 imadisj 6051 . 2 ((𝐹𝐶) = ∅ ↔ (dom 𝐹𝐶) = ∅)
86, 7sylibr 234 1 ((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cin 3913  wss 3914  c0 4296  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-f 6515
This theorem is referenced by:  vdwmc2  16950  gsumval3a  19833  psrbag0  21969  mbfconstlem  25528  itg1val2  25585  ofpreima2  32590
  Copyright terms: Public domain W3C validator