HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chintcli Structured version   Visualization version   GIF version

Theorem chintcli 31266
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chintcl.1 (𝐴C𝐴 ≠ ∅)
Assertion
Ref Expression
chintcli 𝐴C

Proof of Theorem chintcli
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chintcl.1 . . . . . 6 (𝐴C𝐴 ≠ ∅)
21simpli 483 . . . . 5 𝐴C
3 chsssh 31160 . . . . 5 CS
42, 3sstri 3958 . . . 4 𝐴S
51simpri 485 . . . 4 𝐴 ≠ ∅
64, 5pm3.2i 470 . . 3 (𝐴S𝐴 ≠ ∅)
76shintcli 31264 . 2 𝐴S
82sseli 3944 . . . . . . . 8 (𝑦𝐴𝑦C )
9 vex 3454 . . . . . . . . . . 11 𝑥 ∈ V
109chlimi 31169 . . . . . . . . . 10 ((𝑦C𝑓:ℕ⟶𝑦𝑓𝑣 𝑥) → 𝑥𝑦)
11103exp 1119 . . . . . . . . 9 (𝑦C → (𝑓:ℕ⟶𝑦 → (𝑓𝑣 𝑥𝑥𝑦)))
1211com3r 87 . . . . . . . 8 (𝑓𝑣 𝑥 → (𝑦C → (𝑓:ℕ⟶𝑦𝑥𝑦)))
138, 12syl5 34 . . . . . . 7 (𝑓𝑣 𝑥 → (𝑦𝐴 → (𝑓:ℕ⟶𝑦𝑥𝑦)))
1413imp 406 . . . . . 6 ((𝑓𝑣 𝑥𝑦𝐴) → (𝑓:ℕ⟶𝑦𝑥𝑦))
1514ralimdva 3146 . . . . 5 (𝑓𝑣 𝑥 → (∀𝑦𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦𝐴 𝑥𝑦))
165fint 6741 . . . . 5 (𝑓:ℕ⟶ 𝐴 ↔ ∀𝑦𝐴 𝑓:ℕ⟶𝑦)
179elint2 4919 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
1815, 16, 173imtr4g 296 . . . 4 (𝑓𝑣 𝑥 → (𝑓:ℕ⟶ 𝐴𝑥 𝐴))
1918impcom 407 . . 3 ((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
2019gen2 1796 . 2 𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
21 isch2 31158 . 2 ( 𝐴C ↔ ( 𝐴S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)))
227, 20, 21mpbir2an 711 1 𝐴C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wcel 2109  wne 2926  wral 3045  wss 3916  c0 4298   cint 4912   class class class wbr 5109  wf 6509  cn 12187  𝑣 chli 30862   S csh 30863   C cch 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-1cn 11132  ax-addcl 11134  ax-hilex 30934  ax-hfvadd 30935  ax-hv0cl 30938  ax-hfvmul 30940
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-map 8803  df-nn 12188  df-sh 31142  df-ch 31156
This theorem is referenced by:  chintcl  31267  chincli  31395
  Copyright terms: Public domain W3C validator