| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chintcli | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chintcl.1 | ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| chintcli | ⊢ ∩ 𝐴 ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chintcl.1 | . . . . . 6 ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) | |
| 2 | 1 | simpli 483 | . . . . 5 ⊢ 𝐴 ⊆ Cℋ |
| 3 | chsssh 31172 | . . . . 5 ⊢ Cℋ ⊆ Sℋ | |
| 4 | 2, 3 | sstri 3973 | . . . 4 ⊢ 𝐴 ⊆ Sℋ |
| 5 | 1 | simpri 485 | . . . 4 ⊢ 𝐴 ≠ ∅ |
| 6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) |
| 7 | 6 | shintcli 31276 | . 2 ⊢ ∩ 𝐴 ∈ Sℋ |
| 8 | 2 | sseli 3959 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ Cℋ ) |
| 9 | vex 3467 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 10 | 9 | chlimi 31181 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝑓:ℕ⟶𝑦 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝑦) |
| 11 | 10 | 3exp 1119 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝑦))) |
| 12 | 11 | com3r 87 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
| 13 | 8, 12 | syl5 34 | . . . . . . 7 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ 𝐴 → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
| 14 | 13 | imp 406 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦)) |
| 15 | 14 | ralimdva 3154 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 → (∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
| 16 | 5 | fint 6767 | . . . . 5 ⊢ (𝑓:ℕ⟶∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦) |
| 17 | 9 | elint2 4933 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
| 18 | 15, 16, 17 | 3imtr4g 296 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑓:ℕ⟶∩ 𝐴 → 𝑥 ∈ ∩ 𝐴)) |
| 19 | 18 | impcom 407 | . . 3 ⊢ ((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
| 20 | 19 | gen2 1795 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
| 21 | isch2 31170 | . 2 ⊢ (∩ 𝐴 ∈ Cℋ ↔ (∩ 𝐴 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴))) | |
| 22 | 7, 20, 21 | mpbir2an 711 | 1 ⊢ ∩ 𝐴 ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ⊆ wss 3931 ∅c0 4313 ∩ cint 4926 class class class wbr 5123 ⟶wf 6537 ℕcn 12248 ⇝𝑣 chli 30874 Sℋ csh 30875 Cℋ cch 30876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-addcl 11197 ax-hilex 30946 ax-hfvadd 30947 ax-hv0cl 30950 ax-hfvmul 30952 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-map 8850 df-nn 12249 df-sh 31154 df-ch 31168 |
| This theorem is referenced by: chintcl 31279 chincli 31407 |
| Copyright terms: Public domain | W3C validator |