| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > chintcli | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| chintcl.1 | ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| chintcli | ⊢ ∩ 𝐴 ∈ Cℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chintcl.1 | . . . . . 6 ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) | |
| 2 | 1 | simpli 483 | . . . . 5 ⊢ 𝐴 ⊆ Cℋ |
| 3 | chsssh 31205 | . . . . 5 ⊢ Cℋ ⊆ Sℋ | |
| 4 | 2, 3 | sstri 3939 | . . . 4 ⊢ 𝐴 ⊆ Sℋ |
| 5 | 1 | simpri 485 | . . . 4 ⊢ 𝐴 ≠ ∅ |
| 6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) |
| 7 | 6 | shintcli 31309 | . 2 ⊢ ∩ 𝐴 ∈ Sℋ |
| 8 | 2 | sseli 3925 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ Cℋ ) |
| 9 | vex 3440 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
| 10 | 9 | chlimi 31214 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝑓:ℕ⟶𝑦 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝑦) |
| 11 | 10 | 3exp 1119 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝑦))) |
| 12 | 11 | com3r 87 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
| 13 | 8, 12 | syl5 34 | . . . . . . 7 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ 𝐴 → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
| 14 | 13 | imp 406 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦)) |
| 15 | 14 | ralimdva 3144 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 → (∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
| 16 | 5 | fint 6702 | . . . . 5 ⊢ (𝑓:ℕ⟶∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦) |
| 17 | 9 | elint2 4902 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
| 18 | 15, 16, 17 | 3imtr4g 296 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑓:ℕ⟶∩ 𝐴 → 𝑥 ∈ ∩ 𝐴)) |
| 19 | 18 | impcom 407 | . . 3 ⊢ ((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
| 20 | 19 | gen2 1797 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
| 21 | isch2 31203 | . 2 ⊢ (∩ 𝐴 ∈ Cℋ ↔ (∩ 𝐴 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴))) | |
| 22 | 7, 20, 21 | mpbir2an 711 | 1 ⊢ ∩ 𝐴 ∈ Cℋ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4280 ∩ cint 4895 class class class wbr 5089 ⟶wf 6477 ℕcn 12125 ⇝𝑣 chli 30907 Sℋ csh 30908 Cℋ cch 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 ax-hilex 30979 ax-hfvadd 30980 ax-hv0cl 30983 ax-hfvmul 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-map 8752 df-nn 12126 df-sh 31187 df-ch 31201 |
| This theorem is referenced by: chintcl 31312 chincli 31440 |
| Copyright terms: Public domain | W3C validator |