HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chintcli Structured version   Visualization version   GIF version

Theorem chintcli 29693
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chintcl.1 (𝐴C𝐴 ≠ ∅)
Assertion
Ref Expression
chintcli 𝐴C

Proof of Theorem chintcli
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chintcl.1 . . . . . 6 (𝐴C𝐴 ≠ ∅)
21simpli 484 . . . . 5 𝐴C
3 chsssh 29587 . . . . 5 CS
42, 3sstri 3930 . . . 4 𝐴S
51simpri 486 . . . 4 𝐴 ≠ ∅
64, 5pm3.2i 471 . . 3 (𝐴S𝐴 ≠ ∅)
76shintcli 29691 . 2 𝐴S
82sseli 3917 . . . . . . . 8 (𝑦𝐴𝑦C )
9 vex 3436 . . . . . . . . . . 11 𝑥 ∈ V
109chlimi 29596 . . . . . . . . . 10 ((𝑦C𝑓:ℕ⟶𝑦𝑓𝑣 𝑥) → 𝑥𝑦)
11103exp 1118 . . . . . . . . 9 (𝑦C → (𝑓:ℕ⟶𝑦 → (𝑓𝑣 𝑥𝑥𝑦)))
1211com3r 87 . . . . . . . 8 (𝑓𝑣 𝑥 → (𝑦C → (𝑓:ℕ⟶𝑦𝑥𝑦)))
138, 12syl5 34 . . . . . . 7 (𝑓𝑣 𝑥 → (𝑦𝐴 → (𝑓:ℕ⟶𝑦𝑥𝑦)))
1413imp 407 . . . . . 6 ((𝑓𝑣 𝑥𝑦𝐴) → (𝑓:ℕ⟶𝑦𝑥𝑦))
1514ralimdva 3108 . . . . 5 (𝑓𝑣 𝑥 → (∀𝑦𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦𝐴 𝑥𝑦))
165fint 6653 . . . . 5 (𝑓:ℕ⟶ 𝐴 ↔ ∀𝑦𝐴 𝑓:ℕ⟶𝑦)
179elint2 4886 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
1815, 16, 173imtr4g 296 . . . 4 (𝑓𝑣 𝑥 → (𝑓:ℕ⟶ 𝐴𝑥 𝐴))
1918impcom 408 . . 3 ((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
2019gen2 1799 . 2 𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
21 isch2 29585 . 2 ( 𝐴C ↔ ( 𝐴S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)))
227, 20, 21mpbir2an 708 1 𝐴C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wcel 2106  wne 2943  wral 3064  wss 3887  c0 4256   cint 4879   class class class wbr 5074  wf 6429  cn 11973  𝑣 chli 29289   S csh 29290   C cch 29291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-1cn 10929  ax-addcl 10931  ax-hilex 29361  ax-hfvadd 29362  ax-hv0cl 29365  ax-hfvmul 29367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-map 8617  df-nn 11974  df-sh 29569  df-ch 29583
This theorem is referenced by:  chintcl  29694  chincli  29822
  Copyright terms: Public domain W3C validator