![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chintcli | Structured version Visualization version GIF version |
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chintcl.1 | ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
chintcli | ⊢ ∩ 𝐴 ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chintcl.1 | . . . . . 6 ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) | |
2 | 1 | simpli 483 | . . . . 5 ⊢ 𝐴 ⊆ Cℋ |
3 | chsssh 31270 | . . . . 5 ⊢ Cℋ ⊆ Sℋ | |
4 | 2, 3 | sstri 4008 | . . . 4 ⊢ 𝐴 ⊆ Sℋ |
5 | 1 | simpri 485 | . . . 4 ⊢ 𝐴 ≠ ∅ |
6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) |
7 | 6 | shintcli 31374 | . 2 ⊢ ∩ 𝐴 ∈ Sℋ |
8 | 2 | sseli 3994 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ Cℋ ) |
9 | vex 3485 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
10 | 9 | chlimi 31279 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝑓:ℕ⟶𝑦 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝑦) |
11 | 10 | 3exp 1120 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝑦))) |
12 | 11 | com3r 87 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
13 | 8, 12 | syl5 34 | . . . . . . 7 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ 𝐴 → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
14 | 13 | imp 406 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦)) |
15 | 14 | ralimdva 3167 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 → (∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
16 | 5 | fint 6795 | . . . . 5 ⊢ (𝑓:ℕ⟶∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦) |
17 | 9 | elint2 4961 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
18 | 15, 16, 17 | 3imtr4g 296 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑓:ℕ⟶∩ 𝐴 → 𝑥 ∈ ∩ 𝐴)) |
19 | 18 | impcom 407 | . . 3 ⊢ ((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
20 | 19 | gen2 1795 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
21 | isch2 31268 | . 2 ⊢ (∩ 𝐴 ∈ Cℋ ↔ (∩ 𝐴 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴))) | |
22 | 7, 20, 21 | mpbir2an 711 | 1 ⊢ ∩ 𝐴 ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ⊆ wss 3966 ∅c0 4342 ∩ cint 4954 class class class wbr 5151 ⟶wf 6565 ℕcn 12273 ⇝𝑣 chli 30972 Sℋ csh 30973 Cℋ cch 30974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-1cn 11220 ax-addcl 11222 ax-hilex 31044 ax-hfvadd 31045 ax-hv0cl 31048 ax-hfvmul 31050 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-map 8876 df-nn 12274 df-sh 31252 df-ch 31266 |
This theorem is referenced by: chintcl 31377 chincli 31505 |
Copyright terms: Public domain | W3C validator |