HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chintcli Structured version   Visualization version   GIF version

Theorem chintcli 31311
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chintcl.1 (𝐴C𝐴 ≠ ∅)
Assertion
Ref Expression
chintcli 𝐴C

Proof of Theorem chintcli
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chintcl.1 . . . . . 6 (𝐴C𝐴 ≠ ∅)
21simpli 483 . . . . 5 𝐴C
3 chsssh 31205 . . . . 5 CS
42, 3sstri 3939 . . . 4 𝐴S
51simpri 485 . . . 4 𝐴 ≠ ∅
64, 5pm3.2i 470 . . 3 (𝐴S𝐴 ≠ ∅)
76shintcli 31309 . 2 𝐴S
82sseli 3925 . . . . . . . 8 (𝑦𝐴𝑦C )
9 vex 3440 . . . . . . . . . . 11 𝑥 ∈ V
109chlimi 31214 . . . . . . . . . 10 ((𝑦C𝑓:ℕ⟶𝑦𝑓𝑣 𝑥) → 𝑥𝑦)
11103exp 1119 . . . . . . . . 9 (𝑦C → (𝑓:ℕ⟶𝑦 → (𝑓𝑣 𝑥𝑥𝑦)))
1211com3r 87 . . . . . . . 8 (𝑓𝑣 𝑥 → (𝑦C → (𝑓:ℕ⟶𝑦𝑥𝑦)))
138, 12syl5 34 . . . . . . 7 (𝑓𝑣 𝑥 → (𝑦𝐴 → (𝑓:ℕ⟶𝑦𝑥𝑦)))
1413imp 406 . . . . . 6 ((𝑓𝑣 𝑥𝑦𝐴) → (𝑓:ℕ⟶𝑦𝑥𝑦))
1514ralimdva 3144 . . . . 5 (𝑓𝑣 𝑥 → (∀𝑦𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦𝐴 𝑥𝑦))
165fint 6702 . . . . 5 (𝑓:ℕ⟶ 𝐴 ↔ ∀𝑦𝐴 𝑓:ℕ⟶𝑦)
179elint2 4902 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
1815, 16, 173imtr4g 296 . . . 4 (𝑓𝑣 𝑥 → (𝑓:ℕ⟶ 𝐴𝑥 𝐴))
1918impcom 407 . . 3 ((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
2019gen2 1797 . 2 𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
21 isch2 31203 . 2 ( 𝐴C ↔ ( 𝐴S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)))
227, 20, 21mpbir2an 711 1 𝐴C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4280   cint 4895   class class class wbr 5089  wf 6477  cn 12125  𝑣 chli 30907   S csh 30908   C cch 30909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066  ax-hilex 30979  ax-hfvadd 30980  ax-hv0cl 30983  ax-hfvmul 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-nn 12126  df-sh 31187  df-ch 31201
This theorem is referenced by:  chintcl  31312  chincli  31440
  Copyright terms: Public domain W3C validator