![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chintcli | Structured version Visualization version GIF version |
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chintcl.1 | ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
chintcli | ⊢ ∩ 𝐴 ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chintcl.1 | . . . . . 6 ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) | |
2 | 1 | simpli 483 | . . . . 5 ⊢ 𝐴 ⊆ Cℋ |
3 | chsssh 30987 | . . . . 5 ⊢ Cℋ ⊆ Sℋ | |
4 | 2, 3 | sstri 3986 | . . . 4 ⊢ 𝐴 ⊆ Sℋ |
5 | 1 | simpri 485 | . . . 4 ⊢ 𝐴 ≠ ∅ |
6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) |
7 | 6 | shintcli 31091 | . 2 ⊢ ∩ 𝐴 ∈ Sℋ |
8 | 2 | sseli 3973 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ Cℋ ) |
9 | vex 3472 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
10 | 9 | chlimi 30996 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝑓:ℕ⟶𝑦 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝑦) |
11 | 10 | 3exp 1116 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝑦))) |
12 | 11 | com3r 87 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
13 | 8, 12 | syl5 34 | . . . . . . 7 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ 𝐴 → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
14 | 13 | imp 406 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦)) |
15 | 14 | ralimdva 3161 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 → (∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
16 | 5 | fint 6764 | . . . . 5 ⊢ (𝑓:ℕ⟶∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦) |
17 | 9 | elint2 4950 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
18 | 15, 16, 17 | 3imtr4g 296 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑓:ℕ⟶∩ 𝐴 → 𝑥 ∈ ∩ 𝐴)) |
19 | 18 | impcom 407 | . . 3 ⊢ ((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
20 | 19 | gen2 1790 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
21 | isch2 30985 | . 2 ⊢ (∩ 𝐴 ∈ Cℋ ↔ (∩ 𝐴 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴))) | |
22 | 7, 20, 21 | mpbir2an 708 | 1 ⊢ ∩ 𝐴 ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ⊆ wss 3943 ∅c0 4317 ∩ cint 4943 class class class wbr 5141 ⟶wf 6533 ℕcn 12216 ⇝𝑣 chli 30689 Sℋ csh 30690 Cℋ cch 30691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 ax-hilex 30761 ax-hfvadd 30762 ax-hv0cl 30765 ax-hfvmul 30767 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-map 8824 df-nn 12217 df-sh 30969 df-ch 30983 |
This theorem is referenced by: chintcl 31094 chincli 31222 |
Copyright terms: Public domain | W3C validator |