HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chintcli Structured version   Visualization version   GIF version

Theorem chintcli 31244
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chintcl.1 (𝐴C𝐴 ≠ ∅)
Assertion
Ref Expression
chintcli 𝐴C

Proof of Theorem chintcli
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chintcl.1 . . . . . 6 (𝐴C𝐴 ≠ ∅)
21simpli 483 . . . . 5 𝐴C
3 chsssh 31138 . . . . 5 CS
42, 3sstri 3966 . . . 4 𝐴S
51simpri 485 . . . 4 𝐴 ≠ ∅
64, 5pm3.2i 470 . . 3 (𝐴S𝐴 ≠ ∅)
76shintcli 31242 . 2 𝐴S
82sseli 3952 . . . . . . . 8 (𝑦𝐴𝑦C )
9 vex 3461 . . . . . . . . . . 11 𝑥 ∈ V
109chlimi 31147 . . . . . . . . . 10 ((𝑦C𝑓:ℕ⟶𝑦𝑓𝑣 𝑥) → 𝑥𝑦)
11103exp 1119 . . . . . . . . 9 (𝑦C → (𝑓:ℕ⟶𝑦 → (𝑓𝑣 𝑥𝑥𝑦)))
1211com3r 87 . . . . . . . 8 (𝑓𝑣 𝑥 → (𝑦C → (𝑓:ℕ⟶𝑦𝑥𝑦)))
138, 12syl5 34 . . . . . . 7 (𝑓𝑣 𝑥 → (𝑦𝐴 → (𝑓:ℕ⟶𝑦𝑥𝑦)))
1413imp 406 . . . . . 6 ((𝑓𝑣 𝑥𝑦𝐴) → (𝑓:ℕ⟶𝑦𝑥𝑦))
1514ralimdva 3150 . . . . 5 (𝑓𝑣 𝑥 → (∀𝑦𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦𝐴 𝑥𝑦))
165fint 6753 . . . . 5 (𝑓:ℕ⟶ 𝐴 ↔ ∀𝑦𝐴 𝑓:ℕ⟶𝑦)
179elint2 4926 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
1815, 16, 173imtr4g 296 . . . 4 (𝑓𝑣 𝑥 → (𝑓:ℕ⟶ 𝐴𝑥 𝐴))
1918impcom 407 . . 3 ((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
2019gen2 1795 . 2 𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
21 isch2 31136 . 2 ( 𝐴C ↔ ( 𝐴S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)))
227, 20, 21mpbir2an 711 1 𝐴C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537  wcel 2107  wne 2931  wral 3050  wss 3924  c0 4306   cint 4919   class class class wbr 5116  wf 6523  cn 12232  𝑣 chli 30840   S csh 30841   C cch 30842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-1cn 11179  ax-addcl 11181  ax-hilex 30912  ax-hfvadd 30913  ax-hv0cl 30916  ax-hfvmul 30918
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-map 8836  df-nn 12233  df-sh 31120  df-ch 31134
This theorem is referenced by:  chintcl  31245  chincli  31373
  Copyright terms: Public domain W3C validator