Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  chintcli Structured version   Visualization version   GIF version

Theorem chintcli 29102
 Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
chintcl.1 (𝐴C𝐴 ≠ ∅)
Assertion
Ref Expression
chintcli 𝐴C

Proof of Theorem chintcli
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chintcl.1 . . . . . 6 (𝐴C𝐴 ≠ ∅)
21simpli 486 . . . . 5 𝐴C
3 chsssh 28996 . . . . 5 CS
42, 3sstri 3975 . . . 4 𝐴S
51simpri 488 . . . 4 𝐴 ≠ ∅
64, 5pm3.2i 473 . . 3 (𝐴S𝐴 ≠ ∅)
76shintcli 29100 . 2 𝐴S
82sseli 3962 . . . . . . . 8 (𝑦𝐴𝑦C )
9 vex 3497 . . . . . . . . . . 11 𝑥 ∈ V
109chlimi 29005 . . . . . . . . . 10 ((𝑦C𝑓:ℕ⟶𝑦𝑓𝑣 𝑥) → 𝑥𝑦)
11103exp 1115 . . . . . . . . 9 (𝑦C → (𝑓:ℕ⟶𝑦 → (𝑓𝑣 𝑥𝑥𝑦)))
1211com3r 87 . . . . . . . 8 (𝑓𝑣 𝑥 → (𝑦C → (𝑓:ℕ⟶𝑦𝑥𝑦)))
138, 12syl5 34 . . . . . . 7 (𝑓𝑣 𝑥 → (𝑦𝐴 → (𝑓:ℕ⟶𝑦𝑥𝑦)))
1413imp 409 . . . . . 6 ((𝑓𝑣 𝑥𝑦𝐴) → (𝑓:ℕ⟶𝑦𝑥𝑦))
1514ralimdva 3177 . . . . 5 (𝑓𝑣 𝑥 → (∀𝑦𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦𝐴 𝑥𝑦))
165fint 6552 . . . . 5 (𝑓:ℕ⟶ 𝐴 ↔ ∀𝑦𝐴 𝑓:ℕ⟶𝑦)
179elint2 4875 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦𝐴 𝑥𝑦)
1815, 16, 173imtr4g 298 . . . 4 (𝑓𝑣 𝑥 → (𝑓:ℕ⟶ 𝐴𝑥 𝐴))
1918impcom 410 . . 3 ((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
2019gen2 1793 . 2 𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)
21 isch2 28994 . 2 ( 𝐴C ↔ ( 𝐴S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ 𝐴𝑓𝑣 𝑥) → 𝑥 𝐴)))
227, 20, 21mpbir2an 709 1 𝐴C
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398  ∀wal 1531   ∈ wcel 2110   ≠ wne 3016  ∀wral 3138   ⊆ wss 3935  ∅c0 4290  ∩ cint 4868   class class class wbr 5058  ⟶wf 6345  ℕcn 11632   ⇝𝑣 chli 28698   Sℋ csh 28699   Cℋ cch 28700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-1cn 10589  ax-addcl 10591  ax-hilex 28770  ax-hfvadd 28771  ax-hv0cl 28774  ax-hfvmul 28776 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-map 8402  df-nn 11633  df-sh 28978  df-ch 28992 This theorem is referenced by:  chintcl  29103  chincli  29231
 Copyright terms: Public domain W3C validator