MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssint Structured version   Visualization version   GIF version

Theorem ssint 4988
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
ssint (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3997 . 2 (𝐴 𝐵 ↔ ∀𝑦𝐴 𝑦 𝐵)
2 vex 3492 . . . 4 𝑦 ∈ V
32elint2 4977 . . 3 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
43ralbii 3099 . 2 (∀𝑦𝐴 𝑦 𝐵 ↔ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
5 ralcom 3295 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
6 dfss3 3997 . . . 4 (𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
76ralbii 3099 . . 3 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
85, 7bitr4i 278 . 2 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥)
91, 4, 83bitri 297 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wral 3067  wss 3976   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-int 4971
This theorem is referenced by:  ssintab  4989  ssintub  4990  iinpw  5129  oneqmini  6447  fint  6800  fnssintima  7398  sorpssint  7768  iscard2  10045  coftr  10342  isf32lem2  10423  inttsk  10843  dfrtrcl2  15111  isacs1i  17715  mrelatglb  18630  fbfinnfr  23870  fclscmp  24059  noextenddif  27731  eqscut2  27869  scutun12  27873  ssdifidllem  33449  ssmxidllem  33466  fneint  36314  topmeet  36330  igenval2  38026  ismrcd1  42654  onintunirab  43188  dftrcl3  43682  dfrtrcl3  43695  sssalgen  46256  issalgend  46259  intubeu  48656  ipoglblem  48661
  Copyright terms: Public domain W3C validator