Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssint | Structured version Visualization version GIF version |
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ssint | ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3875 | . 2 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵) | |
2 | vex 3404 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4853 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
4 | 3 | ralbii 3081 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
5 | ralcom 3259 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | dfss3 3875 | . . . 4 ⊢ (𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
7 | 6 | ralbii 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) |
8 | 5, 7 | bitr4i 281 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
9 | 1, 4, 8 | 3bitri 300 | 1 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∈ wcel 2114 ∀wral 3054 ⊆ wss 3853 ∩ cint 4846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-11 2162 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-v 3402 df-in 3860 df-ss 3870 df-int 4847 |
This theorem is referenced by: ssintab 4863 ssintub 4864 iinpw 5001 oneqmini 6234 fint 6568 sorpssint 7490 iscard2 9491 coftr 9786 isf32lem2 9867 inttsk 10287 dfrtrcl2 14524 isacs1i 17044 mrelatglb 17923 fbfinnfr 22605 fclscmp 22794 ssmxidllem 31226 fnssintima 33262 noextenddif 33527 eqscut2 33656 scutun12 33660 fneint 34193 topmeet 34209 igenval2 35880 ismrcd1 40133 dftrcl3 40915 dfrtrcl3 40928 sssalgen 43457 issalgend 43460 |
Copyright terms: Public domain | W3C validator |