MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssint Structured version   Visualization version   GIF version

Theorem ssint 4940
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
ssint (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3947 . 2 (𝐴 𝐵 ↔ ∀𝑦𝐴 𝑦 𝐵)
2 vex 3463 . . . 4 𝑦 ∈ V
32elint2 4929 . . 3 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
43ralbii 3082 . 2 (∀𝑦𝐴 𝑦 𝐵 ↔ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
5 ralcom 3270 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
6 dfss3 3947 . . . 4 (𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
76ralbii 3082 . . 3 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
85, 7bitr4i 278 . 2 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥)
91, 4, 83bitri 297 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wral 3051  wss 3926   cint 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461  df-ss 3943  df-int 4923
This theorem is referenced by:  ssintab  4941  ssintub  4942  iinpw  5082  oneqmini  6405  fint  6757  fnssintima  7355  sorpssint  7727  iscard2  9990  coftr  10287  isf32lem2  10368  inttsk  10788  dfrtrcl2  15081  isacs1i  17669  mrelatglb  18570  fbfinnfr  23779  fclscmp  23968  noextenddif  27632  eqscut2  27770  scutun12  27774  onsiso  28221  bdayn0p1  28310  ssdifidllem  33471  ssmxidllem  33488  fneint  36366  topmeet  36382  igenval2  38090  ismrcd1  42721  onintunirab  43251  dftrcl3  43744  dfrtrcl3  43757  sssalgen  46364  issalgend  46367  intubeu  48958  ipoglblem  48963
  Copyright terms: Public domain W3C validator