![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssint | Structured version Visualization version GIF version |
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ssint | ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3878 | . 2 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵) | |
2 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4789 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
4 | 3 | ralbii 3132 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
5 | ralcom 3315 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | dfss3 3878 | . . . 4 ⊢ (𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
7 | 6 | ralbii 3132 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) |
8 | 5, 7 | bitr4i 279 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
9 | 1, 4, 8 | 3bitri 298 | 1 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∈ wcel 2081 ∀wral 3105 ⊆ wss 3859 ∩ cint 4782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-v 3439 df-in 3866 df-ss 3874 df-int 4783 |
This theorem is referenced by: ssintab 4799 ssintub 4800 iinpw 4927 oneqmini 6117 fint 6426 sorpssint 7317 iscard2 9251 coftr 9541 isf32lem2 9622 inttsk 10042 dfrtrcl2 14255 isacs1i 16757 mrelatglb 17623 fbfinnfr 22133 fclscmp 22322 noextenddif 32784 scutun12 32880 fneint 33305 topmeet 33321 igenval2 34876 ismrcd1 38780 dftrcl3 39550 dfrtrcl3 39563 sssalgen 42160 issalgend 42163 |
Copyright terms: Public domain | W3C validator |