MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssint Structured version   Visualization version   GIF version

Theorem ssint 4914
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
ssint (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3919 . 2 (𝐴 𝐵 ↔ ∀𝑦𝐴 𝑦 𝐵)
2 vex 3441 . . . 4 𝑦 ∈ V
32elint2 4904 . . 3 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
43ralbii 3079 . 2 (∀𝑦𝐴 𝑦 𝐵 ↔ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
5 ralcom 3261 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
6 dfss3 3919 . . . 4 (𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
76ralbii 3079 . . 3 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
85, 7bitr4i 278 . 2 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥)
91, 4, 83bitri 297 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  wral 3048  wss 3898   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-11 2162  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-ss 3915  df-int 4898
This theorem is referenced by:  ssintab  4915  ssintub  4916  iinpw  5056  oneqmini  6364  fint  6707  fnssintima  7302  sorpssint  7672  iscard2  9876  coftr  10171  isf32lem2  10252  inttsk  10672  dfrtrcl2  14971  isacs1i  17565  mrelatglb  18468  fbfinnfr  23757  fclscmp  23946  noextenddif  27608  eqscut2  27748  scutun12  27752  onsiso  28206  bdayn0p1  28295  ssdifidllem  33428  ssmxidllem  33445  fneint  36413  topmeet  36429  igenval2  38126  ismrcd1  42815  onintunirab  43344  dftrcl3  43837  dfrtrcl3  43850  sssalgen  46457  issalgend  46460  intubeu  49108  ipoglblem  49113
  Copyright terms: Public domain W3C validator