| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssint | Structured version Visualization version GIF version | ||
| Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ssint | ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3947 | . 2 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵) | |
| 2 | vex 3463 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4929 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 4 | 3 | ralbii 3082 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 5 | ralcom 3270 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 6 | dfss3 3947 | . . . 4 ⊢ (𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 7 | 6 | ralbii 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 8 | 5, 7 | bitr4i 278 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| 9 | 1, 4, 8 | 3bitri 297 | 1 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-int 4923 |
| This theorem is referenced by: ssintab 4941 ssintub 4942 iinpw 5082 oneqmini 6405 fint 6757 fnssintima 7355 sorpssint 7727 iscard2 9990 coftr 10287 isf32lem2 10368 inttsk 10788 dfrtrcl2 15081 isacs1i 17669 mrelatglb 18570 fbfinnfr 23779 fclscmp 23968 noextenddif 27632 eqscut2 27770 scutun12 27774 onsiso 28221 bdayn0p1 28310 ssdifidllem 33471 ssmxidllem 33488 fneint 36366 topmeet 36382 igenval2 38090 ismrcd1 42721 onintunirab 43251 dftrcl3 43744 dfrtrcl3 43757 sssalgen 46364 issalgend 46367 intubeu 48958 ipoglblem 48963 |
| Copyright terms: Public domain | W3C validator |