MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssint Structured version   Visualization version   GIF version

Theorem ssint 4862
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
ssint (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfss3 3875 . 2 (𝐴 𝐵 ↔ ∀𝑦𝐴 𝑦 𝐵)
2 vex 3404 . . . 4 𝑦 ∈ V
32elint2 4853 . . 3 (𝑦 𝐵 ↔ ∀𝑥𝐵 𝑦𝑥)
43ralbii 3081 . 2 (∀𝑦𝐴 𝑦 𝐵 ↔ ∀𝑦𝐴𝑥𝐵 𝑦𝑥)
5 ralcom 3259 . . 3 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
6 dfss3 3875 . . . 4 (𝐴𝑥 ↔ ∀𝑦𝐴 𝑦𝑥)
76ralbii 3081 . . 3 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐵𝑦𝐴 𝑦𝑥)
85, 7bitr4i 281 . 2 (∀𝑦𝐴𝑥𝐵 𝑦𝑥 ↔ ∀𝑥𝐵 𝐴𝑥)
91, 4, 83bitri 300 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2114  wral 3054  wss 3853   cint 4846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ral 3059  df-v 3402  df-in 3860  df-ss 3870  df-int 4847
This theorem is referenced by:  ssintab  4863  ssintub  4864  iinpw  5001  oneqmini  6234  fint  6568  sorpssint  7490  iscard2  9491  coftr  9786  isf32lem2  9867  inttsk  10287  dfrtrcl2  14524  isacs1i  17044  mrelatglb  17923  fbfinnfr  22605  fclscmp  22794  ssmxidllem  31226  fnssintima  33262  noextenddif  33527  eqscut2  33656  scutun12  33660  fneint  34193  topmeet  34209  igenval2  35880  ismrcd1  40133  dftrcl3  40915  dfrtrcl3  40928  sssalgen  43457  issalgend  43460
  Copyright terms: Public domain W3C validator