| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssint | Structured version Visualization version GIF version | ||
| Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ssint | ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3919 | . 2 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵) | |
| 2 | vex 3441 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4904 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 4 | 3 | ralbii 3079 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 5 | ralcom 3261 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 6 | dfss3 3919 | . . . 4 ⊢ (𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 7 | 6 | ralbii 3079 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 8 | 5, 7 | bitr4i 278 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| 9 | 1, 4, 8 | 3bitri 297 | 1 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-int 4898 |
| This theorem is referenced by: ssintab 4915 ssintub 4916 iinpw 5056 oneqmini 6364 fint 6707 fnssintima 7302 sorpssint 7672 iscard2 9876 coftr 10171 isf32lem2 10252 inttsk 10672 dfrtrcl2 14971 isacs1i 17565 mrelatglb 18468 fbfinnfr 23757 fclscmp 23946 noextenddif 27608 eqscut2 27748 scutun12 27752 onsiso 28206 bdayn0p1 28295 ssdifidllem 33428 ssmxidllem 33445 fneint 36413 topmeet 36429 igenval2 38126 ismrcd1 42815 onintunirab 43344 dftrcl3 43837 dfrtrcl3 43850 sssalgen 46457 issalgend 46460 intubeu 49108 ipoglblem 49113 |
| Copyright terms: Public domain | W3C validator |