| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssint | Structured version Visualization version GIF version | ||
| Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
| Ref | Expression |
|---|---|
| ssint | ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 3938 | . 2 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵) | |
| 2 | vex 3454 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | 2 | elint2 4920 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 4 | 3 | ralbii 3076 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
| 5 | ralcom 3266 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 6 | dfss3 3938 | . . . 4 ⊢ (𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
| 7 | 6 | ralbii 3076 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) |
| 8 | 5, 7 | bitr4i 278 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| 9 | 1, 4, 8 | 3bitri 297 | 1 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3934 df-int 4914 |
| This theorem is referenced by: ssintab 4932 ssintub 4933 iinpw 5073 oneqmini 6388 fint 6742 fnssintima 7340 sorpssint 7712 iscard2 9936 coftr 10233 isf32lem2 10314 inttsk 10734 dfrtrcl2 15035 isacs1i 17625 mrelatglb 18526 fbfinnfr 23735 fclscmp 23924 noextenddif 27587 eqscut2 27725 scutun12 27729 onsiso 28176 bdayn0p1 28265 ssdifidllem 33434 ssmxidllem 33451 fneint 36343 topmeet 36359 igenval2 38067 ismrcd1 42693 onintunirab 43223 dftrcl3 43716 dfrtrcl3 43729 sssalgen 46340 issalgend 46343 intubeu 48976 ipoglblem 48981 |
| Copyright terms: Public domain | W3C validator |