Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssint | Structured version Visualization version GIF version |
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ssint | ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3909 | . 2 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵) | |
2 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | 2 | elint2 4886 | . . 3 ⊢ (𝑦 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
4 | 3 | ralbii 3092 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝑦 ∈ ∩ 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥) |
5 | ralcom 3166 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
6 | dfss3 3909 | . . . 4 ⊢ (𝐴 ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) | |
7 | 6 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐴 𝑦 ∈ 𝑥) |
8 | 5, 7 | bitr4i 277 | . 2 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
9 | 1, 4, 8 | 3bitri 297 | 1 ⊢ (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-int 4880 |
This theorem is referenced by: ssintab 4896 ssintub 4897 iinpw 5035 oneqmini 6317 fint 6653 sorpssint 7586 iscard2 9734 coftr 10029 isf32lem2 10110 inttsk 10530 dfrtrcl2 14773 isacs1i 17366 mrelatglb 18278 fbfinnfr 22992 fclscmp 23181 ssmxidllem 31641 fnssintima 33676 noextenddif 33871 eqscut2 34000 scutun12 34004 fneint 34537 topmeet 34553 igenval2 36224 ismrcd1 40520 dftrcl3 41328 dfrtrcl3 41341 sssalgen 43874 issalgend 43877 intubeu 46270 ipoglblem 46275 |
Copyright terms: Public domain | W3C validator |