| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > functermclem | Structured version Visualization version GIF version | ||
| Description: Lemma for functermc 49113. (Contributed by Zhi Wang, 17-Oct-2025.) |
| Ref | Expression |
|---|---|
| functermclem.1 | ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐾 = 𝐹) |
| functermclem.2 | ⊢ (𝜑 → (𝐹𝑅𝐿 ↔ 𝐿 = 𝐺)) |
| Ref | Expression |
|---|---|
| functermclem | ⊢ (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functermclem.1 | . . 3 ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐾 = 𝐹) | |
| 2 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐾𝑅𝐿) | |
| 3 | 1, 2 | eqbrtrrd 5165 | . . . 4 ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐹𝑅𝐿) |
| 4 | functermclem.2 | . . . . 5 ⊢ (𝜑 → (𝐹𝑅𝐿 ↔ 𝐿 = 𝐺)) | |
| 5 | 4 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝐹𝑅𝐿) → 𝐿 = 𝐺) |
| 6 | 3, 5 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → 𝐿 = 𝐺) |
| 7 | 1, 6 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝐾𝑅𝐿) → (𝐾 = 𝐹 ∧ 𝐿 = 𝐺)) |
| 8 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺)) → 𝐾 = 𝐹) | |
| 9 | 4 | biimpar 477 | . . . 4 ⊢ ((𝜑 ∧ 𝐿 = 𝐺) → 𝐹𝑅𝐿) |
| 10 | 9 | adantrl 716 | . . 3 ⊢ ((𝜑 ∧ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺)) → 𝐹𝑅𝐿) |
| 11 | 8, 10 | eqbrtrd 5163 | . 2 ⊢ ((𝜑 ∧ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺)) → 𝐾𝑅𝐿) |
| 12 | 7, 11 | impbida 801 | 1 ⊢ (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 class class class wbr 5141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5142 |
| This theorem is referenced by: functermc 49113 |
| Copyright terms: Public domain | W3C validator |