Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermclem Structured version   Visualization version   GIF version

Theorem functermclem 49539
Description: Lemma for functermc 49540. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermclem.1 ((𝜑𝐾𝑅𝐿) → 𝐾 = 𝐹)
functermclem.2 (𝜑 → (𝐹𝑅𝐿𝐿 = 𝐺))
Assertion
Ref Expression
functermclem (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹𝐿 = 𝐺)))

Proof of Theorem functermclem
StepHypRef Expression
1 functermclem.1 . . 3 ((𝜑𝐾𝑅𝐿) → 𝐾 = 𝐹)
2 simpr 484 . . . . 5 ((𝜑𝐾𝑅𝐿) → 𝐾𝑅𝐿)
31, 2eqbrtrrd 5110 . . . 4 ((𝜑𝐾𝑅𝐿) → 𝐹𝑅𝐿)
4 functermclem.2 . . . . 5 (𝜑 → (𝐹𝑅𝐿𝐿 = 𝐺))
54biimpa 476 . . . 4 ((𝜑𝐹𝑅𝐿) → 𝐿 = 𝐺)
63, 5syldan 591 . . 3 ((𝜑𝐾𝑅𝐿) → 𝐿 = 𝐺)
71, 6jca 511 . 2 ((𝜑𝐾𝑅𝐿) → (𝐾 = 𝐹𝐿 = 𝐺))
8 simprl 770 . . 3 ((𝜑 ∧ (𝐾 = 𝐹𝐿 = 𝐺)) → 𝐾 = 𝐹)
94biimpar 477 . . . 4 ((𝜑𝐿 = 𝐺) → 𝐹𝑅𝐿)
109adantrl 716 . . 3 ((𝜑 ∧ (𝐾 = 𝐹𝐿 = 𝐺)) → 𝐹𝑅𝐿)
118, 10eqbrtrd 5108 . 2 ((𝜑 ∧ (𝐾 = 𝐹𝐿 = 𝐺)) → 𝐾𝑅𝐿)
127, 11impbida 800 1 (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹𝐿 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541   class class class wbr 5086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087
This theorem is referenced by:  functermc  49540
  Copyright terms: Public domain W3C validator