Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermclem Structured version   Visualization version   GIF version

Theorem functermclem 49112
Description: Lemma for functermc 49113. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermclem.1 ((𝜑𝐾𝑅𝐿) → 𝐾 = 𝐹)
functermclem.2 (𝜑 → (𝐹𝑅𝐿𝐿 = 𝐺))
Assertion
Ref Expression
functermclem (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹𝐿 = 𝐺)))

Proof of Theorem functermclem
StepHypRef Expression
1 functermclem.1 . . 3 ((𝜑𝐾𝑅𝐿) → 𝐾 = 𝐹)
2 simpr 484 . . . . 5 ((𝜑𝐾𝑅𝐿) → 𝐾𝑅𝐿)
31, 2eqbrtrrd 5165 . . . 4 ((𝜑𝐾𝑅𝐿) → 𝐹𝑅𝐿)
4 functermclem.2 . . . . 5 (𝜑 → (𝐹𝑅𝐿𝐿 = 𝐺))
54biimpa 476 . . . 4 ((𝜑𝐹𝑅𝐿) → 𝐿 = 𝐺)
63, 5syldan 591 . . 3 ((𝜑𝐾𝑅𝐿) → 𝐿 = 𝐺)
71, 6jca 511 . 2 ((𝜑𝐾𝑅𝐿) → (𝐾 = 𝐹𝐿 = 𝐺))
8 simprl 771 . . 3 ((𝜑 ∧ (𝐾 = 𝐹𝐿 = 𝐺)) → 𝐾 = 𝐹)
94biimpar 477 . . . 4 ((𝜑𝐿 = 𝐺) → 𝐹𝑅𝐿)
109adantrl 716 . . 3 ((𝜑 ∧ (𝐾 = 𝐹𝐿 = 𝐺)) → 𝐹𝑅𝐿)
118, 10eqbrtrd 5163 . 2 ((𝜑 ∧ (𝐾 = 𝐹𝐿 = 𝐺)) → 𝐾𝑅𝐿)
127, 11impbida 801 1 (𝜑 → (𝐾𝑅𝐿 ↔ (𝐾 = 𝐹𝐿 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540   class class class wbr 5141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5142
This theorem is referenced by:  functermc  49113
  Copyright terms: Public domain W3C validator