Step | Hyp | Ref
| Expression |
1 | | functermc.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
2 | | functermc.c |
. . . 4
⊢ 𝐶 = (Base‘𝐸) |
3 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐾(𝐷 Func 𝐸)𝐿) → 𝐾(𝐷 Func 𝐸)𝐿) |
4 | 1, 2, 3 | funcf1 17907 |
. . 3
⊢ ((𝜑 ∧ 𝐾(𝐷 Func 𝐸)𝐿) → 𝐾:𝐵⟶𝐶) |
5 | | functermc.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ TermCat) |
6 | 5, 2 | termcbas 49100 |
. . . . 5
⊢ (𝜑 → ∃𝑧 𝐶 = {𝑧}) |
7 | | feq3 6716 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → (𝐾:𝐵⟶𝐶 ↔ 𝐾:𝐵⟶{𝑧})) |
8 | | vex 3483 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
9 | 8 | fconst2 7223 |
. . . . . . . 8
⊢ (𝐾:𝐵⟶{𝑧} ↔ 𝐾 = (𝐵 × {𝑧})) |
10 | | functermc.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝐵 × 𝐶) |
11 | | xpeq2 5704 |
. . . . . . . . . 10
⊢ (𝐶 = {𝑧} → (𝐵 × 𝐶) = (𝐵 × {𝑧})) |
12 | 10, 11 | eqtrid 2788 |
. . . . . . . . 9
⊢ (𝐶 = {𝑧} → 𝐹 = (𝐵 × {𝑧})) |
13 | 12 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝐶 = {𝑧} → (𝐾 = 𝐹 ↔ 𝐾 = (𝐵 × {𝑧}))) |
14 | 9, 13 | bitr4id 290 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → (𝐾:𝐵⟶{𝑧} ↔ 𝐾 = 𝐹)) |
15 | 7, 14 | bitrd 279 |
. . . . . 6
⊢ (𝐶 = {𝑧} → (𝐾:𝐵⟶𝐶 ↔ 𝐾 = 𝐹)) |
16 | 15 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑧 𝐶 = {𝑧} → (𝐾:𝐵⟶𝐶 ↔ 𝐾 = 𝐹)) |
17 | 6, 16 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐾:𝐵⟶𝐶 ↔ 𝐾 = 𝐹)) |
18 | 17 | biimpa 476 |
. . 3
⊢ ((𝜑 ∧ 𝐾:𝐵⟶𝐶) → 𝐾 = 𝐹) |
19 | 4, 18 | syldan 591 |
. 2
⊢ ((𝜑 ∧ 𝐾(𝐷 Func 𝐸)𝐿) → 𝐾 = 𝐹) |
20 | | functermc.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
21 | | functermc.j |
. . 3
⊢ 𝐽 = (Hom ‘𝐸) |
22 | | functermc.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
23 | 5 | termcthind 49098 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ThinCat) |
24 | 8 | fconst 6792 |
. . . . . 6
⊢ (𝐵 × {𝑧}):𝐵⟶{𝑧} |
25 | 12 | feq1d 6718 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → (𝐹:𝐵⟶𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶𝐶)) |
26 | | feq3 6716 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → ((𝐵 × {𝑧}):𝐵⟶𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶{𝑧})) |
27 | 25, 26 | bitrd 279 |
. . . . . 6
⊢ (𝐶 = {𝑧} → (𝐹:𝐵⟶𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶{𝑧})) |
28 | 24, 27 | mpbiri 258 |
. . . . 5
⊢ (𝐶 = {𝑧} → 𝐹:𝐵⟶𝐶) |
29 | 28 | exlimiv 1930 |
. . . 4
⊢
(∃𝑧 𝐶 = {𝑧} → 𝐹:𝐵⟶𝐶) |
30 | 6, 29 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
31 | | functermc.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
32 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝐸 ∈ TermCat) |
33 | 30 | ffvelcdmda 7102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ 𝐶) |
34 | 33 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐹‘𝑧) ∈ 𝐶) |
35 | 30 | ffvelcdmda 7102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → (𝐹‘𝑤) ∈ 𝐶) |
36 | 35 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐹‘𝑤) ∈ 𝐶) |
37 | 32, 2, 34, 36, 21 | termchomn0 49102 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ¬ ((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅) |
38 | 37 | pm2.21d 121 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
39 | 38 | ralrimivva 3201 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
40 | 1, 2, 20, 21, 22, 23, 30, 31, 39 | functhinc 49070 |
. 2
⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐿 ↔ 𝐿 = 𝐺)) |
41 | 19, 40 | functermclem 49112 |
1
⊢ (𝜑 → (𝐾(𝐷 Func 𝐸)𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) |