| Step | Hyp | Ref
| Expression |
| 1 | | functermc.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
| 2 | | functermc.c |
. . . 4
⊢ 𝐶 = (Base‘𝐸) |
| 3 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝐾(𝐷 Func 𝐸)𝐿) → 𝐾(𝐷 Func 𝐸)𝐿) |
| 4 | 1, 2, 3 | funcf1 17883 |
. . 3
⊢ ((𝜑 ∧ 𝐾(𝐷 Func 𝐸)𝐿) → 𝐾:𝐵⟶𝐶) |
| 5 | | functermc.e |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ TermCat) |
| 6 | 5, 2 | termcbas 49179 |
. . . . 5
⊢ (𝜑 → ∃𝑧 𝐶 = {𝑧}) |
| 7 | | feq3 6698 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → (𝐾:𝐵⟶𝐶 ↔ 𝐾:𝐵⟶{𝑧})) |
| 8 | | vex 3467 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 9 | 8 | fconst2 7207 |
. . . . . . . 8
⊢ (𝐾:𝐵⟶{𝑧} ↔ 𝐾 = (𝐵 × {𝑧})) |
| 10 | | functermc.f |
. . . . . . . . . 10
⊢ 𝐹 = (𝐵 × 𝐶) |
| 11 | | xpeq2 5686 |
. . . . . . . . . 10
⊢ (𝐶 = {𝑧} → (𝐵 × 𝐶) = (𝐵 × {𝑧})) |
| 12 | 10, 11 | eqtrid 2781 |
. . . . . . . . 9
⊢ (𝐶 = {𝑧} → 𝐹 = (𝐵 × {𝑧})) |
| 13 | 12 | eqeq2d 2745 |
. . . . . . . 8
⊢ (𝐶 = {𝑧} → (𝐾 = 𝐹 ↔ 𝐾 = (𝐵 × {𝑧}))) |
| 14 | 9, 13 | bitr4id 290 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → (𝐾:𝐵⟶{𝑧} ↔ 𝐾 = 𝐹)) |
| 15 | 7, 14 | bitrd 279 |
. . . . . 6
⊢ (𝐶 = {𝑧} → (𝐾:𝐵⟶𝐶 ↔ 𝐾 = 𝐹)) |
| 16 | 15 | exlimiv 1929 |
. . . . 5
⊢
(∃𝑧 𝐶 = {𝑧} → (𝐾:𝐵⟶𝐶 ↔ 𝐾 = 𝐹)) |
| 17 | 6, 16 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐾:𝐵⟶𝐶 ↔ 𝐾 = 𝐹)) |
| 18 | 17 | biimpa 476 |
. . 3
⊢ ((𝜑 ∧ 𝐾:𝐵⟶𝐶) → 𝐾 = 𝐹) |
| 19 | 4, 18 | syldan 591 |
. 2
⊢ ((𝜑 ∧ 𝐾(𝐷 Func 𝐸)𝐿) → 𝐾 = 𝐹) |
| 20 | | functermc.h |
. . 3
⊢ 𝐻 = (Hom ‘𝐷) |
| 21 | | functermc.j |
. . 3
⊢ 𝐽 = (Hom ‘𝐸) |
| 22 | | functermc.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
| 23 | 5 | termcthind 49177 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ThinCat) |
| 24 | 8 | fconst 6774 |
. . . . . 6
⊢ (𝐵 × {𝑧}):𝐵⟶{𝑧} |
| 25 | 12 | feq1d 6700 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → (𝐹:𝐵⟶𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶𝐶)) |
| 26 | | feq3 6698 |
. . . . . . 7
⊢ (𝐶 = {𝑧} → ((𝐵 × {𝑧}):𝐵⟶𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶{𝑧})) |
| 27 | 25, 26 | bitrd 279 |
. . . . . 6
⊢ (𝐶 = {𝑧} → (𝐹:𝐵⟶𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶{𝑧})) |
| 28 | 24, 27 | mpbiri 258 |
. . . . 5
⊢ (𝐶 = {𝑧} → 𝐹:𝐵⟶𝐶) |
| 29 | 28 | exlimiv 1929 |
. . . 4
⊢
(∃𝑧 𝐶 = {𝑧} → 𝐹:𝐵⟶𝐶) |
| 30 | 6, 29 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| 31 | | functermc.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 32 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → 𝐸 ∈ TermCat) |
| 33 | 30 | ffvelcdmda 7084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ 𝐶) |
| 34 | 33 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐹‘𝑧) ∈ 𝐶) |
| 35 | 30 | ffvelcdmda 7084 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐵) → (𝐹‘𝑤) ∈ 𝐶) |
| 36 | 35 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐹‘𝑤) ∈ 𝐶) |
| 37 | 32, 2, 34, 36, 21 | termchomn0 49182 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ¬ ((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅) |
| 38 | 37 | pm2.21d 121 |
. . . 4
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
| 39 | 38 | ralrimivva 3189 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (((𝐹‘𝑧)𝐽(𝐹‘𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅)) |
| 40 | 1, 2, 20, 21, 22, 23, 30, 31, 39 | functhinc 49149 |
. 2
⊢ (𝜑 → (𝐹(𝐷 Func 𝐸)𝐿 ↔ 𝐿 = 𝐺)) |
| 41 | 19, 40 | functermclem 49205 |
1
⊢ (𝜑 → (𝐾(𝐷 Func 𝐸)𝐿 ↔ (𝐾 = 𝐹 ∧ 𝐿 = 𝐺))) |