Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functermc Structured version   Visualization version   GIF version

Theorem functermc 49477
Description: Functor to a terminal category. (Contributed by Zhi Wang, 17-Oct-2025.)
Hypotheses
Ref Expression
functermc.d (𝜑𝐷 ∈ Cat)
functermc.e (𝜑𝐸 ∈ TermCat)
functermc.b 𝐵 = (Base‘𝐷)
functermc.c 𝐶 = (Base‘𝐸)
functermc.h 𝐻 = (Hom ‘𝐷)
functermc.j 𝐽 = (Hom ‘𝐸)
functermc.f 𝐹 = (𝐵 × 𝐶)
functermc.g 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
Assertion
Ref Expression
functermc (𝜑 → (𝐾(𝐷 Func 𝐸)𝐿 ↔ (𝐾 = 𝐹𝐿 = 𝐺)))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem functermc
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functermc.b . . . 4 𝐵 = (Base‘𝐷)
2 functermc.c . . . 4 𝐶 = (Base‘𝐸)
3 simpr 484 . . . 4 ((𝜑𝐾(𝐷 Func 𝐸)𝐿) → 𝐾(𝐷 Func 𝐸)𝐿)
41, 2, 3funcf1 17834 . . 3 ((𝜑𝐾(𝐷 Func 𝐸)𝐿) → 𝐾:𝐵𝐶)
5 functermc.e . . . . . 6 (𝜑𝐸 ∈ TermCat)
65, 2termcbas 49449 . . . . 5 (𝜑 → ∃𝑧 𝐶 = {𝑧})
7 feq3 6670 . . . . . . 7 (𝐶 = {𝑧} → (𝐾:𝐵𝐶𝐾:𝐵⟶{𝑧}))
8 vex 3454 . . . . . . . . 9 𝑧 ∈ V
98fconst2 7181 . . . . . . . 8 (𝐾:𝐵⟶{𝑧} ↔ 𝐾 = (𝐵 × {𝑧}))
10 functermc.f . . . . . . . . . 10 𝐹 = (𝐵 × 𝐶)
11 xpeq2 5661 . . . . . . . . . 10 (𝐶 = {𝑧} → (𝐵 × 𝐶) = (𝐵 × {𝑧}))
1210, 11eqtrid 2777 . . . . . . . . 9 (𝐶 = {𝑧} → 𝐹 = (𝐵 × {𝑧}))
1312eqeq2d 2741 . . . . . . . 8 (𝐶 = {𝑧} → (𝐾 = 𝐹𝐾 = (𝐵 × {𝑧})))
149, 13bitr4id 290 . . . . . . 7 (𝐶 = {𝑧} → (𝐾:𝐵⟶{𝑧} ↔ 𝐾 = 𝐹))
157, 14bitrd 279 . . . . . 6 (𝐶 = {𝑧} → (𝐾:𝐵𝐶𝐾 = 𝐹))
1615exlimiv 1930 . . . . 5 (∃𝑧 𝐶 = {𝑧} → (𝐾:𝐵𝐶𝐾 = 𝐹))
176, 16syl 17 . . . 4 (𝜑 → (𝐾:𝐵𝐶𝐾 = 𝐹))
1817biimpa 476 . . 3 ((𝜑𝐾:𝐵𝐶) → 𝐾 = 𝐹)
194, 18syldan 591 . 2 ((𝜑𝐾(𝐷 Func 𝐸)𝐿) → 𝐾 = 𝐹)
20 functermc.h . . 3 𝐻 = (Hom ‘𝐷)
21 functermc.j . . 3 𝐽 = (Hom ‘𝐸)
22 functermc.d . . 3 (𝜑𝐷 ∈ Cat)
235termcthind 49447 . . 3 (𝜑𝐸 ∈ ThinCat)
248fconst 6748 . . . . . 6 (𝐵 × {𝑧}):𝐵⟶{𝑧}
2512feq1d 6672 . . . . . . 7 (𝐶 = {𝑧} → (𝐹:𝐵𝐶 ↔ (𝐵 × {𝑧}):𝐵𝐶))
26 feq3 6670 . . . . . . 7 (𝐶 = {𝑧} → ((𝐵 × {𝑧}):𝐵𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶{𝑧}))
2725, 26bitrd 279 . . . . . 6 (𝐶 = {𝑧} → (𝐹:𝐵𝐶 ↔ (𝐵 × {𝑧}):𝐵⟶{𝑧}))
2824, 27mpbiri 258 . . . . 5 (𝐶 = {𝑧} → 𝐹:𝐵𝐶)
2928exlimiv 1930 . . . 4 (∃𝑧 𝐶 = {𝑧} → 𝐹:𝐵𝐶)
306, 29syl 17 . . 3 (𝜑𝐹:𝐵𝐶)
31 functermc.g . . 3 𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
325adantr 480 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → 𝐸 ∈ TermCat)
3330ffvelcdmda 7058 . . . . . . 7 ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ 𝐶)
3433adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝐹𝑧) ∈ 𝐶)
3530ffvelcdmda 7058 . . . . . . 7 ((𝜑𝑤𝐵) → (𝐹𝑤) ∈ 𝐶)
3635adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝐹𝑤) ∈ 𝐶)
3732, 2, 34, 36, 21termchomn0 49453 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → ¬ ((𝐹𝑧)𝐽(𝐹𝑤)) = ∅)
3837pm2.21d 121 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
3938ralrimivva 3181 . . 3 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
401, 2, 20, 21, 22, 23, 30, 31, 39functhinc 49417 . 2 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐿𝐿 = 𝐺))
4119, 40functermclem 49476 1 (𝜑 → (𝐾(𝐷 Func 𝐸)𝐿 ↔ (𝐾 = 𝐹𝐿 = 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  c0 4298  {csn 4591   class class class wbr 5109   × cxp 5638  wf 6509  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  Catccat 17631   Func cfunc 17822  TermCatctermc 49441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-func 17826  df-thinc 49387  df-termc 49442
This theorem is referenced by:  functermc2  49478
  Copyright terms: Public domain W3C validator