Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 8-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrd.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrd | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrd.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | eqbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 5085 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Copyright terms: Public domain | W3C validator |