| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6641 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5654 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6534 |
| This theorem is referenced by: fdm 6715 f1dm 6778 f1o00 6853 fvelimad 6946 rescnvimafod 7063 f1eqcocnv 7294 ofrfvalg 7679 offval 7680 fndmexd 7900 dmmpoga 8072 fnwelem 8130 frrlem4 8288 frrlem8 8292 frrlem10 8294 fpr2 8303 fprresex 8309 wfrlem17OLD 8339 wfr2 8350 tfrlem5 8394 ixpiunwdom 9604 frr2 9774 dfac12lem1 10158 ackbij2lem3 10254 itunisuc 10433 ttukeylem3 10525 prdsbas2 17483 prdsplusgval 17487 prdsmulrval 17489 prdsleval 17491 prdsvscaval 17493 imasleval 17555 ssclem 17832 isssc 17833 rescval2 17841 issubc2 17849 cofuval 17895 resfval2 17906 resf1st 17907 resf2nd 17908 prdsmgp 20111 lspextmo 21014 dsmmfi 21698 ofco2 22389 neiss2 23039 txdis1cn 23573 qtopcld 23651 qtoprest 23655 kqsat 23669 kqdisj 23670 isr0 23675 elfm3 23888 ovolunlem1 25450 ofpreima 32643 ofpreima2 32644 fnpreimac 32649 fsuppcurry1 32702 fsuppcurry2 32703 pfxf1 32917 s2rnOLD 32919 s3rnOLD 32921 cycpmfvlem 33123 cycpmfv1 33124 cycpmfv2 33125 cycpmfv3 33126 1arithidomlem2 33551 1arithidom 33552 ply1annidllem 33735 ofcfval 34129 probfinmeasb 34460 bnj564 34775 bnj1121 35016 bnj1442 35080 bnj1450 35081 bnj1501 35098 fnrelpredd 35120 sdclem2 37766 prdstotbnd 37818 diadm 41054 dibdiadm 41174 dibdmN 41176 dicdmN 41203 dihdm 41288 aks4d1p1p5 42088 aks6d1c6lem2 42184 tfsconcat0b 43370 fnchoice 45053 wessf1ornlem 45209 limsupequzlem 45751 climrescn 45777 icccncfext 45916 stoweidlem35 46064 stoweidlem59 46088 smflimmpt 46839 smflimsuplem7 46855 iinfssclem1 49021 infsubc2d 49029 oppfvallem 49081 funcoppc3 49090 uptposlem 49130 |
| Copyright terms: Public domain | W3C validator |