Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fndm 6536 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5589 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-fn 6436 |
This theorem is referenced by: fdm 6609 f1dm 6674 f1o00 6751 fvelimad 6836 rescnvimafod 6951 f1eqcocnv 7173 ofrfvalg 7541 offval 7542 fndmexd 7753 dmmpoga 7913 fnwelem 7972 frrlem4 8105 frrlem8 8109 frrlem10 8111 fpr2 8120 fprresex 8126 wfrlem17OLD 8156 wfr2 8167 tfrlem5 8211 ixpiunwdom 9349 frr2 9518 dfac12lem1 9899 ackbij2lem3 9997 itunisuc 10175 ttukeylem3 10267 prdsbas2 17180 prdsplusgval 17184 prdsmulrval 17186 prdsleval 17188 prdsvscaval 17190 imasleval 17252 ssclem 17531 isssc 17532 rescval2 17540 issubc2 17551 cofuval 17597 resfval2 17608 resf1st 17609 resf2nd 17610 prdsmgp 19849 lspextmo 20318 dsmmfi 20945 ofco2 21600 neiss2 22252 txdis1cn 22786 qtopcld 22864 qtoprest 22868 kqsat 22882 kqdisj 22883 isr0 22888 elfm3 23101 ovolunlem1 24661 ofpreima 31002 ofpreima2 31003 fnpreimac 31008 fsuppcurry1 31060 fsuppcurry2 31061 pfxf1 31216 s2rn 31218 s3rn 31220 cycpmfvlem 31379 cycpmfv1 31380 cycpmfv2 31381 cycpmfv3 31382 ofcfval 32066 probfinmeasb 32395 bnj564 32724 bnj1121 32965 bnj1442 33029 bnj1450 33030 bnj1501 33047 fnrelpredd 33061 sdclem2 35900 prdstotbnd 35952 diadm 39049 dibdiadm 39169 dibdmN 39171 dicdmN 39198 dihdm 39283 aks4d1p1p5 40083 fnchoice 42572 wessf1ornlem 42722 limsupequzlem 43263 climrescn 43289 icccncfext 43428 stoweidlem35 43576 stoweidlem59 43600 smflimmpt 44343 smflimsuplem7 44359 |
Copyright terms: Public domain | W3C validator |