Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fndm 6520 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 dom cdm 5580 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6421 |
This theorem is referenced by: fdm 6593 f1dm 6658 f1o00 6734 fvelimad 6818 rescnvimafod 6933 f1eqcocnv 7153 ofrfvalg 7519 offval 7520 fndmexd 7727 dmmpoga 7886 fnwelem 7943 frrlem4 8076 frrlem8 8080 frrlem10 8082 fpr2 8091 fprresex 8097 wfrlem17OLD 8127 wfr2 8138 tfrlem5 8182 ixpiunwdom 9279 frr2 9449 dfac12lem1 9830 ackbij2lem3 9928 itunisuc 10106 ttukeylem3 10198 prdsbas2 17097 prdsplusgval 17101 prdsmulrval 17103 prdsleval 17105 prdsvscaval 17107 imasleval 17169 ssclem 17448 isssc 17449 rescval2 17457 issubc2 17467 cofuval 17513 resfval2 17524 resf1st 17525 resf2nd 17526 prdsmgp 19764 lspextmo 20233 dsmmfi 20855 ofco2 21508 neiss2 22160 txdis1cn 22694 qtopcld 22772 qtoprest 22776 kqsat 22790 kqdisj 22791 isr0 22796 elfm3 23009 ovolunlem1 24566 ofpreima 30904 ofpreima2 30905 fnpreimac 30910 fsuppcurry1 30962 fsuppcurry2 30963 pfxf1 31118 s2rn 31120 s3rn 31122 cycpmfvlem 31281 cycpmfv1 31282 cycpmfv2 31283 cycpmfv3 31284 ofcfval 31966 probfinmeasb 32295 bnj564 32624 bnj1121 32865 bnj1442 32929 bnj1450 32930 bnj1501 32947 fnrelpredd 32961 sdclem2 35827 prdstotbnd 35879 diadm 38976 dibdiadm 39096 dibdmN 39098 dicdmN 39125 dihdm 39210 aks4d1p1p5 40011 fnchoice 42461 wessf1ornlem 42611 limsupequzlem 43153 climrescn 43179 icccncfext 43318 stoweidlem35 43466 stoweidlem59 43490 smflimmpt 44230 smflimsuplem7 44246 |
Copyright terms: Public domain | W3C validator |