![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fndm 6671 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 dom cdm 5688 Fn wfn 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6565 |
This theorem is referenced by: fdm 6745 f1dm 6808 f1o00 6883 fvelimad 6975 rescnvimafod 7092 f1eqcocnv 7320 ofrfvalg 7704 offval 7705 fndmexd 7926 dmmpoga 8096 fnwelem 8154 frrlem4 8312 frrlem8 8316 frrlem10 8318 fpr2 8327 fprresex 8333 wfrlem17OLD 8363 wfr2 8374 tfrlem5 8418 ixpiunwdom 9627 frr2 9797 dfac12lem1 10181 ackbij2lem3 10277 itunisuc 10456 ttukeylem3 10548 prdsbas2 17515 prdsplusgval 17519 prdsmulrval 17521 prdsleval 17523 prdsvscaval 17525 imasleval 17587 ssclem 17866 isssc 17867 rescval2 17875 issubc2 17886 cofuval 17932 resfval2 17943 resf1st 17944 resf2nd 17945 prdsmgp 20168 lspextmo 21072 dsmmfi 21775 ofco2 22472 neiss2 23124 txdis1cn 23658 qtopcld 23736 qtoprest 23740 kqsat 23754 kqdisj 23755 isr0 23760 elfm3 23973 ovolunlem1 25545 ofpreima 32681 ofpreima2 32682 fnpreimac 32687 fsuppcurry1 32742 fsuppcurry2 32743 pfxf1 32910 s2rnOLD 32912 s3rnOLD 32914 cycpmfvlem 33114 cycpmfv1 33115 cycpmfv2 33116 cycpmfv3 33117 1arithidomlem2 33543 1arithidom 33544 ply1annidllem 33708 ofcfval 34078 probfinmeasb 34409 bnj564 34736 bnj1121 34977 bnj1442 35041 bnj1450 35042 bnj1501 35059 fnrelpredd 35081 sdclem2 37728 prdstotbnd 37780 diadm 41017 dibdiadm 41137 dibdmN 41139 dicdmN 41166 dihdm 41251 aks4d1p1p5 42056 aks6d1c6lem2 42152 tfsconcat0b 43335 fnchoice 44966 wessf1ornlem 45127 limsupequzlem 45677 climrescn 45703 icccncfext 45842 stoweidlem35 45990 stoweidlem59 46014 smflimmpt 46765 smflimsuplem7 46781 |
Copyright terms: Public domain | W3C validator |