| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6589 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5623 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 |
| This theorem is referenced by: fdm 6665 f1dm 6728 f1o00 6803 fvelimad 6894 rescnvimafod 7011 f1eqcocnv 7242 ofrfvalg 7625 offval 7626 fndmexd 7844 dmmpoga 8015 fnwelem 8071 frrlem4 8229 frrlem8 8233 frrlem10 8235 fpr2 8244 fprresex 8250 wfr2 8267 tfrlem5 8309 ixpiunwdom 9501 frr2 9675 dfac12lem1 10057 ackbij2lem3 10153 itunisuc 10332 ttukeylem3 10424 prdsbas2 17391 prdsplusgval 17395 prdsmulrval 17397 prdsleval 17399 prdsvscaval 17401 imasleval 17463 ssclem 17744 isssc 17745 rescval2 17753 issubc2 17761 cofuval 17807 resfval2 17818 resf1st 17819 resf2nd 17820 prdsmgp 20054 lspextmo 20978 dsmmfi 21663 ofco2 22354 neiss2 23004 txdis1cn 23538 qtopcld 23616 qtoprest 23620 kqsat 23634 kqdisj 23635 isr0 23640 elfm3 23853 ovolunlem1 25414 ofpreima 32622 ofpreima2 32623 fnpreimac 32628 fsuppcurry1 32681 fsuppcurry2 32682 pfxf1 32896 s2rnOLD 32898 s3rnOLD 32900 cycpmfvlem 33067 cycpmfv1 33068 cycpmfv2 33069 cycpmfv3 33070 1arithidomlem2 33483 1arithidom 33484 ply1annidllem 33667 ofcfval 34064 probfinmeasb 34395 bnj564 34710 bnj1121 34951 bnj1442 35015 bnj1450 35016 bnj1501 35033 fnrelpredd 35055 sdclem2 37721 prdstotbnd 37773 diadm 41014 dibdiadm 41134 dibdmN 41136 dicdmN 41163 dihdm 41248 aks4d1p1p5 42048 aks6d1c6lem2 42144 tfsconcat0b 43319 fnchoice 45007 wessf1ornlem 45163 limsupequzlem 45704 climrescn 45730 icccncfext 45869 stoweidlem35 46017 stoweidlem59 46041 smflimmpt 46792 smflimsuplem7 46808 iinfssclem1 49040 infsubc2d 49048 oppfvallem 49121 funcoppc3 49133 uptposlem 49183 |
| Copyright terms: Public domain | W3C validator |