![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fndm 6682 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 dom cdm 5700 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6576 |
This theorem is referenced by: fdm 6756 f1dm 6821 f1o00 6897 fvelimad 6989 rescnvimafod 7107 f1eqcocnv 7337 ofrfvalg 7722 offval 7723 fndmexd 7944 dmmpoga 8114 fnwelem 8172 frrlem4 8330 frrlem8 8334 frrlem10 8336 fpr2 8345 fprresex 8351 wfrlem17OLD 8381 wfr2 8392 tfrlem5 8436 ixpiunwdom 9659 frr2 9829 dfac12lem1 10213 ackbij2lem3 10309 itunisuc 10488 ttukeylem3 10580 prdsbas2 17529 prdsplusgval 17533 prdsmulrval 17535 prdsleval 17537 prdsvscaval 17539 imasleval 17601 ssclem 17880 isssc 17881 rescval2 17889 issubc2 17900 cofuval 17946 resfval2 17957 resf1st 17958 resf2nd 17959 prdsmgp 20178 lspextmo 21078 dsmmfi 21781 ofco2 22478 neiss2 23130 txdis1cn 23664 qtopcld 23742 qtoprest 23746 kqsat 23760 kqdisj 23761 isr0 23766 elfm3 23979 ovolunlem1 25551 ofpreima 32683 ofpreima2 32684 fnpreimac 32689 fsuppcurry1 32739 fsuppcurry2 32740 pfxf1 32908 s2rnOLD 32910 s3rnOLD 32912 cycpmfvlem 33105 cycpmfv1 33106 cycpmfv2 33107 cycpmfv3 33108 1arithidomlem2 33529 1arithidom 33530 ply1annidllem 33694 ofcfval 34062 probfinmeasb 34393 bnj564 34720 bnj1121 34961 bnj1442 35025 bnj1450 35026 bnj1501 35043 fnrelpredd 35065 sdclem2 37702 prdstotbnd 37754 diadm 40992 dibdiadm 41112 dibdmN 41114 dicdmN 41141 dihdm 41226 aks4d1p1p5 42032 aks6d1c6lem2 42128 tfsconcat0b 43308 fnchoice 44929 wessf1ornlem 45092 limsupequzlem 45643 climrescn 45669 icccncfext 45808 stoweidlem35 45956 stoweidlem59 45980 smflimmpt 46731 smflimsuplem7 46747 |
Copyright terms: Public domain | W3C validator |