| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6589 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5619 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6489 |
| This theorem is referenced by: fdm 6665 f1dm 6728 f1o00 6803 fvelimad 6895 rescnvimafod 7012 f1eqcocnv 7241 ofrfvalg 7624 offval 7625 fndmexd 7840 dmmpoga 8011 fnwelem 8067 frrlem4 8225 frrlem8 8229 frrlem10 8231 fpr2 8240 fprresex 8246 wfr2 8263 tfrlem5 8305 ixpiunwdom 9483 frr2 9660 dfac12lem1 10042 ackbij2lem3 10138 itunisuc 10317 ttukeylem3 10409 prdsbas2 17375 prdsplusgval 17379 prdsmulrval 17381 prdsleval 17383 prdsvscaval 17385 imasleval 17447 ssclem 17728 isssc 17729 rescval2 17737 issubc2 17745 cofuval 17791 resfval2 17802 resf1st 17803 resf2nd 17804 prdsmgp 20071 lspextmo 20992 dsmmfi 21677 ofco2 22367 neiss2 23017 txdis1cn 23551 qtopcld 23629 qtoprest 23633 kqsat 23647 kqdisj 23648 isr0 23653 elfm3 23866 ovolunlem1 25426 ofpreima 32649 ofpreima2 32650 fnpreimac 32655 fsuppcurry1 32711 fsuppcurry2 32712 pfxf1 32930 s2rnOLD 32932 s3rnOLD 32934 cycpmfvlem 33088 cycpmfv1 33089 cycpmfv2 33090 cycpmfv3 33091 1arithidomlem2 33508 1arithidom 33509 esplyind 33613 ply1annidllem 33735 ofcfval 34132 probfinmeasb 34462 bnj564 34777 bnj1121 35018 bnj1442 35082 bnj1450 35083 bnj1501 35100 fnrelpredd 35123 sdclem2 37802 prdstotbnd 37854 diadm 41154 dibdiadm 41274 dibdmN 41276 dicdmN 41303 dihdm 41388 aks4d1p1p5 42188 aks6d1c6lem2 42284 tfsconcat0b 43463 fnchoice 45150 wessf1ornlem 45306 limsupequzlem 45844 climrescn 45870 icccncfext 46009 stoweidlem35 46157 stoweidlem59 46181 smflimmpt 46932 smflimsuplem7 46948 iinfssclem1 49179 infsubc2d 49187 oppfvallem 49260 funcoppc3 49272 uptposlem 49322 |
| Copyright terms: Public domain | W3C validator |