![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
Ref | Expression |
---|---|
fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | fndm 6651 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 dom cdm 5672 Fn wfn 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-fn 6545 |
This theorem is referenced by: fdm 6725 f1dm 6791 f1o00 6868 fvelimad 6960 rescnvimafod 7077 f1eqcocnv 7304 ofrfvalg 7687 offval 7688 fndmexd 7906 dmmpoga 8071 fnwelem 8130 frrlem4 8288 frrlem8 8292 frrlem10 8294 fpr2 8303 fprresex 8309 wfrlem17OLD 8339 wfr2 8350 tfrlem5 8394 ixpiunwdom 9605 frr2 9775 dfac12lem1 10158 ackbij2lem3 10256 itunisuc 10434 ttukeylem3 10526 prdsbas2 17442 prdsplusgval 17446 prdsmulrval 17448 prdsleval 17450 prdsvscaval 17452 imasleval 17514 ssclem 17793 isssc 17794 rescval2 17802 issubc2 17813 cofuval 17859 resfval2 17870 resf1st 17871 resf2nd 17872 prdsmgp 20082 lspextmo 20930 dsmmfi 21659 ofco2 22340 neiss2 22992 txdis1cn 23526 qtopcld 23604 qtoprest 23608 kqsat 23622 kqdisj 23623 isr0 23628 elfm3 23841 ovolunlem1 25413 ofpreima 32434 ofpreima2 32435 fnpreimac 32440 fsuppcurry1 32491 fsuppcurry2 32492 pfxf1 32647 s2rn 32649 s3rn 32651 cycpmfvlem 32811 cycpmfv1 32812 cycpmfv2 32813 cycpmfv3 32814 ply1annidllem 33308 ofcfval 33653 probfinmeasb 33984 bnj564 34311 bnj1121 34552 bnj1442 34616 bnj1450 34617 bnj1501 34634 fnrelpredd 34648 sdclem2 37150 prdstotbnd 37202 diadm 40445 dibdiadm 40565 dibdmN 40567 dicdmN 40594 dihdm 40679 aks4d1p1p5 41483 aks6d1c6lem2 41575 tfsconcat0b 42698 fnchoice 44314 wessf1ornlem 44481 limsupequzlem 45033 climrescn 45059 icccncfext 45198 stoweidlem35 45346 stoweidlem59 45370 smflimmpt 46121 smflimsuplem7 46137 |
Copyright terms: Public domain | W3C validator |