| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6621 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5638 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6514 |
| This theorem is referenced by: fdm 6697 f1dm 6760 f1o00 6835 fvelimad 6928 rescnvimafod 7045 f1eqcocnv 7276 ofrfvalg 7661 offval 7662 fndmexd 7880 dmmpoga 8052 fnwelem 8110 frrlem4 8268 frrlem8 8272 frrlem10 8274 fpr2 8283 fprresex 8289 wfr2 8306 tfrlem5 8348 ixpiunwdom 9543 frr2 9713 dfac12lem1 10097 ackbij2lem3 10193 itunisuc 10372 ttukeylem3 10464 prdsbas2 17432 prdsplusgval 17436 prdsmulrval 17438 prdsleval 17440 prdsvscaval 17442 imasleval 17504 ssclem 17781 isssc 17782 rescval2 17790 issubc2 17798 cofuval 17844 resfval2 17855 resf1st 17856 resf2nd 17857 prdsmgp 20060 lspextmo 20963 dsmmfi 21647 ofco2 22338 neiss2 22988 txdis1cn 23522 qtopcld 23600 qtoprest 23604 kqsat 23618 kqdisj 23619 isr0 23624 elfm3 23837 ovolunlem1 25398 ofpreima 32589 ofpreima2 32590 fnpreimac 32595 fsuppcurry1 32648 fsuppcurry2 32649 pfxf1 32863 s2rnOLD 32865 s3rnOLD 32867 cycpmfvlem 33069 cycpmfv1 33070 cycpmfv2 33071 cycpmfv3 33072 1arithidomlem2 33507 1arithidom 33508 ply1annidllem 33691 ofcfval 34088 probfinmeasb 34419 bnj564 34734 bnj1121 34975 bnj1442 35039 bnj1450 35040 bnj1501 35057 fnrelpredd 35079 sdclem2 37736 prdstotbnd 37788 diadm 41029 dibdiadm 41149 dibdmN 41151 dicdmN 41178 dihdm 41263 aks4d1p1p5 42063 aks6d1c6lem2 42159 tfsconcat0b 43335 fnchoice 45023 wessf1ornlem 45179 limsupequzlem 45720 climrescn 45746 icccncfext 45885 stoweidlem35 46033 stoweidlem59 46057 smflimmpt 46808 smflimsuplem7 46824 iinfssclem1 49043 infsubc2d 49051 oppfvallem 49124 funcoppc3 49136 uptposlem 49186 |
| Copyright terms: Public domain | W3C validator |