| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6584 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 dom cdm 5616 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6484 |
| This theorem is referenced by: fdm 6660 f1dm 6723 f1o00 6798 fvelimad 6889 rescnvimafod 7006 f1eqcocnv 7235 ofrfvalg 7618 offval 7619 fndmexd 7834 dmmpoga 8005 fnwelem 8061 frrlem4 8219 frrlem8 8223 frrlem10 8225 fpr2 8234 fprresex 8240 wfr2 8257 tfrlem5 8299 ixpiunwdom 9476 frr2 9650 dfac12lem1 10032 ackbij2lem3 10128 itunisuc 10307 ttukeylem3 10399 prdsbas2 17370 prdsplusgval 17374 prdsmulrval 17376 prdsleval 17378 prdsvscaval 17380 imasleval 17442 ssclem 17723 isssc 17724 rescval2 17732 issubc2 17740 cofuval 17786 resfval2 17797 resf1st 17798 resf2nd 17799 prdsmgp 20067 lspextmo 20988 dsmmfi 21673 ofco2 22364 neiss2 23014 txdis1cn 23548 qtopcld 23626 qtoprest 23630 kqsat 23644 kqdisj 23645 isr0 23650 elfm3 23863 ovolunlem1 25423 ofpreima 32642 ofpreima2 32643 fnpreimac 32648 fsuppcurry1 32702 fsuppcurry2 32703 pfxf1 32918 s2rnOLD 32920 s3rnOLD 32922 cycpmfvlem 33076 cycpmfv1 33077 cycpmfv2 33078 cycpmfv3 33079 1arithidomlem2 33496 1arithidom 33497 ply1annidllem 33709 ofcfval 34106 probfinmeasb 34436 bnj564 34751 bnj1121 34992 bnj1442 35056 bnj1450 35057 bnj1501 35074 fnrelpredd 35097 sdclem2 37781 prdstotbnd 37833 diadm 41073 dibdiadm 41193 dibdmN 41195 dicdmN 41222 dihdm 41307 aks4d1p1p5 42107 aks6d1c6lem2 42203 tfsconcat0b 43378 fnchoice 45065 wessf1ornlem 45221 limsupequzlem 45759 climrescn 45785 icccncfext 45924 stoweidlem35 46072 stoweidlem59 46096 smflimmpt 46847 smflimsuplem7 46863 iinfssclem1 49085 infsubc2d 49093 oppfvallem 49166 funcoppc3 49178 uptposlem 49228 |
| Copyright terms: Public domain | W3C validator |