| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fndmd | Structured version Visualization version GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fndm 6624 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 dom cdm 5641 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-fn 6517 |
| This theorem is referenced by: fdm 6700 f1dm 6763 f1o00 6838 fvelimad 6931 rescnvimafod 7048 f1eqcocnv 7279 ofrfvalg 7664 offval 7665 fndmexd 7883 dmmpoga 8055 fnwelem 8113 frrlem4 8271 frrlem8 8275 frrlem10 8277 fpr2 8286 fprresex 8292 wfr2 8309 tfrlem5 8351 ixpiunwdom 9550 frr2 9720 dfac12lem1 10104 ackbij2lem3 10200 itunisuc 10379 ttukeylem3 10471 prdsbas2 17439 prdsplusgval 17443 prdsmulrval 17445 prdsleval 17447 prdsvscaval 17449 imasleval 17511 ssclem 17788 isssc 17789 rescval2 17797 issubc2 17805 cofuval 17851 resfval2 17862 resf1st 17863 resf2nd 17864 prdsmgp 20067 lspextmo 20970 dsmmfi 21654 ofco2 22345 neiss2 22995 txdis1cn 23529 qtopcld 23607 qtoprest 23611 kqsat 23625 kqdisj 23626 isr0 23631 elfm3 23844 ovolunlem1 25405 ofpreima 32596 ofpreima2 32597 fnpreimac 32602 fsuppcurry1 32655 fsuppcurry2 32656 pfxf1 32870 s2rnOLD 32872 s3rnOLD 32874 cycpmfvlem 33076 cycpmfv1 33077 cycpmfv2 33078 cycpmfv3 33079 1arithidomlem2 33514 1arithidom 33515 ply1annidllem 33698 ofcfval 34095 probfinmeasb 34426 bnj564 34741 bnj1121 34982 bnj1442 35046 bnj1450 35047 bnj1501 35064 fnrelpredd 35086 sdclem2 37743 prdstotbnd 37795 diadm 41036 dibdiadm 41156 dibdmN 41158 dicdmN 41185 dihdm 41270 aks4d1p1p5 42070 aks6d1c6lem2 42166 tfsconcat0b 43342 fnchoice 45030 wessf1ornlem 45186 limsupequzlem 45727 climrescn 45753 icccncfext 45892 stoweidlem35 46040 stoweidlem59 46064 smflimmpt 46815 smflimsuplem7 46831 iinfssclem1 49047 infsubc2d 49055 oppfvallem 49128 funcoppc3 49140 uptposlem 49190 |
| Copyright terms: Public domain | W3C validator |