![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpreima | Structured version Visualization version GIF version |
Description: Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
elpreima | ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 5725 | . . . . 5 ⊢ (◡𝐹 “ 𝐶) ⊆ dom 𝐹 | |
2 | 1 | sseli 3822 | . . . 4 ⊢ (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ dom 𝐹) |
3 | fndm 6222 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | eleq2d 2891 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ dom 𝐹 ↔ 𝐵 ∈ 𝐴)) |
5 | 2, 4 | syl5ib 236 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → 𝐵 ∈ 𝐴)) |
6 | fnfun 6220 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
7 | fvimacnvi 6579 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) | |
8 | 6, 7 | sylan 577 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (◡𝐹 “ 𝐶)) → (𝐹‘𝐵) ∈ 𝐶) |
9 | 8 | ex 403 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐹‘𝐵) ∈ 𝐶)) |
10 | 5, 9 | jcad 510 | . 2 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) → (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
11 | fvimacnv 6580 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) | |
12 | 11 | funfni 6223 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 ↔ 𝐵 ∈ (◡𝐹 “ 𝐶))) |
13 | 12 | biimpd 221 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) ∈ 𝐶 → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
14 | 13 | expimpd 447 | . 2 ⊢ (𝐹 Fn 𝐴 → ((𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶) → 𝐵 ∈ (◡𝐹 “ 𝐶))) |
15 | 10, 14 | impbid 204 | 1 ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ (◡𝐹 “ 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ (𝐹‘𝐵) ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2166 ◡ccnv 5340 dom cdm 5341 “ cima 5344 Fun wfun 6116 Fn wfn 6117 ‘cfv 6122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-fv 6130 |
This theorem is referenced by: fniniseg 6586 fncnvima2 6587 unpreima 6589 respreima 6592 fnse 7557 brwitnlem 7853 unxpwdom2 8761 smobeth 9722 fpwwe2lem6 9771 fpwwe2lem9 9774 hashkf 13411 isercolllem2 14772 isercolllem3 14773 isercoll 14774 fsumss 14832 fprodss 15050 tanval 15229 1arith 16001 0ram 16094 ghmpreima 18032 ghmnsgpreima 18035 torsubg 18609 kerf1hrm 19098 lmhmpreima 19406 evlslem3 19873 mpfind 19895 znunithash 20271 cncnpi 21452 cncnp 21454 cnpdis 21467 cnt0 21520 cnhaus 21528 2ndcomap 21631 1stccnp 21635 ptpjpre1 21744 tx1cn 21782 tx2cn 21783 txcnmpt 21797 txdis1cn 21808 hauseqlcld 21819 xkoptsub 21827 xkococn 21833 kqsat 21904 kqcldsat 21906 kqreglem1 21914 kqreglem2 21915 reghmph 21966 ordthmeolem 21974 tmdcn2 22262 clssubg 22281 tgphaus 22289 qustgplem 22293 ucncn 22458 xmeterval 22606 imasf1obl 22662 blval2 22736 metuel2 22739 isnghm 22896 cnbl0 22946 cnblcld 22947 cnheiborlem 23122 nmhmcn 23288 ismbl 23691 mbfeqalem1 23806 mbfmulc2lem 23812 mbfmax 23814 mbfposr 23817 mbfimaopnlem 23820 mbfaddlem 23825 mbfsup 23829 i1f1lem 23854 i1fpos 23871 mbfi1fseqlem4 23883 itg2monolem1 23915 itg2gt0 23925 itg2cnlem1 23926 itg2cnlem2 23927 plyeq0lem 24364 dgrlem 24383 dgrub 24388 dgrlb 24390 pserulm 24574 psercnlem2 24576 psercnlem1 24577 psercn 24578 abelth 24593 eff1olem 24693 ellogrn 24704 dvloglem 24792 logf1o2 24794 efopnlem1 24800 efopnlem2 24801 logtayl 24804 cxpcn3lem 24889 cxpcn3 24890 resqrtcn 24891 asinneg 25025 areambl 25097 sqff1o 25320 ubthlem1 28280 unipreima 29994 1stpreima 30031 2ndpreima 30032 suppss3 30049 kerunit 30367 smatrcl 30406 cnre2csqlem 30500 elzrhunit 30567 qqhval2lem 30569 qqhf 30574 1stmbfm 30866 2ndmbfm 30867 mbfmcnt 30874 eulerpartlemsv2 30964 eulerpartlemv 30970 eulerpartlemf 30976 eulerpartlemgvv 30982 eulerpartlemgh 30984 eulerpartlemgs2 30986 sseqmw 30998 sseqf 30999 sseqp1 31002 fiblem 31005 fibp1 31008 cvmseu 31803 cvmliftmolem1 31808 cvmliftmolem2 31809 cvmliftlem15 31825 cvmlift2lem10 31839 cvmlift3lem8 31853 elmthm 32018 mthmblem 32022 mclsppslem 32025 mclspps 32026 cnambfre 34000 dvtan 34002 ftc1anclem3 34029 ftc1anclem5 34031 areacirc 34047 sstotbnd2 34114 keridl 34372 ellkr 35163 pw2f1ocnv 38446 binomcxplemdvbinom 39391 binomcxplemcvg 39392 binomcxplemnotnn0 39394 rfcnpre1 39995 rfcnpre2 40007 rfcnpre3 40009 rfcnpre4 40010 elpreimad 40254 limsupresxr 40792 liminfresxr 40793 icccncfext 40894 sge0fodjrnlem 41423 smfsuplem1 41810 |
Copyright terms: Public domain | W3C validator |