| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafv2b | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6914. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| fnbrafv2b | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (𝐹''''𝐵) = (𝐹''''𝐵) | |
| 2 | fundmdfat 47134 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝐹 defAt 𝐵) | |
| 3 | 2 | funfni 6627 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐹 defAt 𝐵) |
| 4 | dfatafv2ex 47218 | . . . . . 6 ⊢ (𝐹 defAt 𝐵 → (𝐹''''𝐵) ∈ V) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹''''𝐵) ∈ V) |
| 6 | eqeq2 2742 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → ((𝐹''''𝐵) = 𝑥 ↔ (𝐹''''𝐵) = (𝐹''''𝐵))) | |
| 7 | breq2 5114 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹''''𝐵))) | |
| 8 | 6, 7 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = (𝐹''''𝐵) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 = (𝐹''''𝐵)) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
| 10 | fneu 6631 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
| 11 | tz6.12c-afv2 47247 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
| 13 | 5, 9, 12 | vtocld 3530 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))) |
| 14 | 1, 13 | mpbii 233 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹''''𝐵)) |
| 15 | breq2 5114 | . . 3 ⊢ ((𝐹''''𝐵) = 𝐶 → (𝐵𝐹(𝐹''''𝐵) ↔ 𝐵𝐹𝐶)) | |
| 16 | 14, 15 | syl5ibcom 245 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
| 17 | fnfun 6621 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 18 | funbrafv2 47252 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
| 21 | 16, 20 | impbid 212 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2562 Vcvv 3450 class class class wbr 5110 Fun wfun 6508 Fn wfn 6509 defAt wdfat 47121 ''''cafv2 47213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-dfat 47124 df-afv2 47214 |
| This theorem is referenced by: fnopafv2b 47254 funbrafv22b 47255 |
| Copyright terms: Public domain | W3C validator |