Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnbrafv2b Structured version   Visualization version   GIF version

Theorem fnbrafv2b 47253
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6914. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
fnbrafv2b ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrafv2b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (𝐹''''𝐵) = (𝐹''''𝐵)
2 fundmdfat 47134 . . . . . . 7 ((Fun 𝐹𝐵 ∈ dom 𝐹) → 𝐹 defAt 𝐵)
32funfni 6627 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐹 defAt 𝐵)
4 dfatafv2ex 47218 . . . . . 6 (𝐹 defAt 𝐵 → (𝐹''''𝐵) ∈ V)
53, 4syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹''''𝐵) ∈ V)
6 eqeq2 2742 . . . . . . 7 (𝑥 = (𝐹''''𝐵) → ((𝐹''''𝐵) = 𝑥 ↔ (𝐹''''𝐵) = (𝐹''''𝐵)))
7 breq2 5114 . . . . . . 7 (𝑥 = (𝐹''''𝐵) → (𝐵𝐹𝑥𝐵𝐹(𝐹''''𝐵)))
86, 7bibi12d 345 . . . . . 6 (𝑥 = (𝐹''''𝐵) → (((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))))
98adantl 481 . . . . 5 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑥 = (𝐹''''𝐵)) → (((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))))
10 fneu 6631 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑥 𝐵𝐹𝑥)
11 tz6.12c-afv2 47247 . . . . . 6 (∃!𝑥 𝐵𝐹𝑥 → ((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥))
1210, 11syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥))
135, 9, 12vtocld 3530 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))
141, 13mpbii 233 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵𝐹(𝐹''''𝐵))
15 breq2 5114 . . 3 ((𝐹''''𝐵) = 𝐶 → (𝐵𝐹(𝐹''''𝐵) ↔ 𝐵𝐹𝐶))
1614, 15syl5ibcom 245 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))
17 fnfun 6621 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
18 funbrafv2 47252 . . . 4 (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶))
1917, 18syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶))
2019adantr 480 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶))
2116, 20impbid 212 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  Vcvv 3450   class class class wbr 5110  Fun wfun 6508   Fn wfn 6509   defAt wdfat 47121  ''''cafv2 47213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-dfat 47124  df-afv2 47214
This theorem is referenced by:  fnopafv2b  47254  funbrafv22b  47255
  Copyright terms: Public domain W3C validator