| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafv2b | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6959. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| fnbrafv2b | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . 4 ⊢ (𝐹''''𝐵) = (𝐹''''𝐵) | |
| 2 | fundmdfat 47141 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝐹 defAt 𝐵) | |
| 3 | 2 | funfni 6674 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐹 defAt 𝐵) |
| 4 | dfatafv2ex 47225 | . . . . . 6 ⊢ (𝐹 defAt 𝐵 → (𝐹''''𝐵) ∈ V) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹''''𝐵) ∈ V) |
| 6 | eqeq2 2749 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → ((𝐹''''𝐵) = 𝑥 ↔ (𝐹''''𝐵) = (𝐹''''𝐵))) | |
| 7 | breq2 5147 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹''''𝐵))) | |
| 8 | 6, 7 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = (𝐹''''𝐵) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 = (𝐹''''𝐵)) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
| 10 | fneu 6678 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
| 11 | tz6.12c-afv2 47254 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
| 13 | 5, 9, 12 | vtocld 3561 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))) |
| 14 | 1, 13 | mpbii 233 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹''''𝐵)) |
| 15 | breq2 5147 | . . 3 ⊢ ((𝐹''''𝐵) = 𝐶 → (𝐵𝐹(𝐹''''𝐵) ↔ 𝐵𝐹𝐶)) | |
| 16 | 14, 15 | syl5ibcom 245 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
| 17 | fnfun 6668 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 18 | funbrafv2 47259 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
| 21 | 16, 20 | impbid 212 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!weu 2568 Vcvv 3480 class class class wbr 5143 Fun wfun 6555 Fn wfn 6556 defAt wdfat 47128 ''''cafv2 47220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-res 5697 df-iota 6514 df-fun 6563 df-fn 6564 df-dfat 47131 df-afv2 47221 |
| This theorem is referenced by: fnopafv2b 47261 funbrafv22b 47262 |
| Copyright terms: Public domain | W3C validator |