| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafv2b | Structured version Visualization version GIF version | ||
| Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6872. (Contributed by AV, 6-Sep-2022.) |
| Ref | Expression |
|---|---|
| fnbrafv2b | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (𝐹''''𝐵) = (𝐹''''𝐵) | |
| 2 | fundmdfat 47166 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝐹 defAt 𝐵) | |
| 3 | 2 | funfni 6587 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐹 defAt 𝐵) |
| 4 | dfatafv2ex 47250 | . . . . . 6 ⊢ (𝐹 defAt 𝐵 → (𝐹''''𝐵) ∈ V) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹''''𝐵) ∈ V) |
| 6 | eqeq2 2743 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → ((𝐹''''𝐵) = 𝑥 ↔ (𝐹''''𝐵) = (𝐹''''𝐵))) | |
| 7 | breq2 5095 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹''''𝐵))) | |
| 8 | 6, 7 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = (𝐹''''𝐵) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
| 9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 = (𝐹''''𝐵)) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
| 10 | fneu 6591 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
| 11 | tz6.12c-afv2 47279 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
| 13 | 5, 9, 12 | vtocld 3516 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))) |
| 14 | 1, 13 | mpbii 233 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹''''𝐵)) |
| 15 | breq2 5095 | . . 3 ⊢ ((𝐹''''𝐵) = 𝐶 → (𝐵𝐹(𝐹''''𝐵) ↔ 𝐵𝐹𝐶)) | |
| 16 | 14, 15 | syl5ibcom 245 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
| 17 | fnfun 6581 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 18 | funbrafv2 47284 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
| 21 | 16, 20 | impbid 212 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃!weu 2563 Vcvv 3436 class class class wbr 5091 Fun wfun 6475 Fn wfn 6476 defAt wdfat 47153 ''''cafv2 47245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-res 5628 df-iota 6437 df-fun 6483 df-fn 6484 df-dfat 47156 df-afv2 47246 |
| This theorem is referenced by: fnopafv2b 47286 funbrafv22b 47287 |
| Copyright terms: Public domain | W3C validator |