Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnbrafv2b | Structured version Visualization version GIF version |
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6804. (Contributed by AV, 6-Sep-2022.) |
Ref | Expression |
---|---|
fnbrafv2b | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (𝐹''''𝐵) = (𝐹''''𝐵) | |
2 | fundmdfat 44508 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 𝐹 defAt 𝐵) | |
3 | 2 | funfni 6523 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐹 defAt 𝐵) |
4 | dfatafv2ex 44592 | . . . . . 6 ⊢ (𝐹 defAt 𝐵 → (𝐹''''𝐵) ∈ V) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐹''''𝐵) ∈ V) |
6 | eqeq2 2750 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → ((𝐹''''𝐵) = 𝑥 ↔ (𝐹''''𝐵) = (𝐹''''𝐵))) | |
7 | breq2 5074 | . . . . . . 7 ⊢ (𝑥 = (𝐹''''𝐵) → (𝐵𝐹𝑥 ↔ 𝐵𝐹(𝐹''''𝐵))) | |
8 | 6, 7 | bibi12d 345 | . . . . . 6 ⊢ (𝑥 = (𝐹''''𝐵) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
9 | 8 | adantl 481 | . . . . 5 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) ∧ 𝑥 = (𝐹''''𝐵)) → (((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))) |
10 | fneu 6527 | . . . . . 6 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ∃!𝑥 𝐵𝐹𝑥) | |
11 | tz6.12c-afv2 44621 | . . . . . 6 ⊢ (∃!𝑥 𝐵𝐹𝑥 → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝑥 ↔ 𝐵𝐹𝑥)) |
13 | 5, 9, 12 | vtocld 3484 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))) |
14 | 1, 13 | mpbii 232 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵𝐹(𝐹''''𝐵)) |
15 | breq2 5074 | . . 3 ⊢ ((𝐹''''𝐵) = 𝐶 → (𝐵𝐹(𝐹''''𝐵) ↔ 𝐵𝐹𝐶)) | |
16 | 14, 15 | syl5ibcom 244 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 → 𝐵𝐹𝐶)) |
17 | fnfun 6517 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
18 | funbrafv2 44626 | . . . 4 ⊢ (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
20 | 19 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶)) |
21 | 16, 20 | impbid 211 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹''''𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!weu 2568 Vcvv 3422 class class class wbr 5070 Fun wfun 6412 Fn wfn 6413 defAt wdfat 44495 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-dfat 44498 df-afv2 44588 |
This theorem is referenced by: fnopafv2b 44628 funbrafv22b 44629 |
Copyright terms: Public domain | W3C validator |