Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnbrafv2b Structured version   Visualization version   GIF version

Theorem fnbrafv2b 45726
Description: Equivalence of function value and binary relation, analogous to fnbrfvb 6931. (Contributed by AV, 6-Sep-2022.)
Assertion
Ref Expression
fnbrafv2b ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))

Proof of Theorem fnbrafv2b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 (𝐹''''𝐵) = (𝐹''''𝐵)
2 fundmdfat 45607 . . . . . . 7 ((Fun 𝐹𝐵 ∈ dom 𝐹) → 𝐹 defAt 𝐵)
32funfni 6644 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐹 defAt 𝐵)
4 dfatafv2ex 45691 . . . . . 6 (𝐹 defAt 𝐵 → (𝐹''''𝐵) ∈ V)
53, 4syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐹''''𝐵) ∈ V)
6 eqeq2 2743 . . . . . . 7 (𝑥 = (𝐹''''𝐵) → ((𝐹''''𝐵) = 𝑥 ↔ (𝐹''''𝐵) = (𝐹''''𝐵)))
7 breq2 5145 . . . . . . 7 (𝑥 = (𝐹''''𝐵) → (𝐵𝐹𝑥𝐵𝐹(𝐹''''𝐵)))
86, 7bibi12d 345 . . . . . 6 (𝑥 = (𝐹''''𝐵) → (((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))))
98adantl 482 . . . . 5 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑥 = (𝐹''''𝐵)) → (((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥) ↔ ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵))))
10 fneu 6648 . . . . . 6 ((𝐹 Fn 𝐴𝐵𝐴) → ∃!𝑥 𝐵𝐹𝑥)
11 tz6.12c-afv2 45720 . . . . . 6 (∃!𝑥 𝐵𝐹𝑥 → ((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥))
1210, 11syl 17 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝑥𝐵𝐹𝑥))
135, 9, 12vtocld 3539 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = (𝐹''''𝐵) ↔ 𝐵𝐹(𝐹''''𝐵)))
141, 13mpbii 232 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → 𝐵𝐹(𝐹''''𝐵))
15 breq2 5145 . . 3 ((𝐹''''𝐵) = 𝐶 → (𝐵𝐹(𝐹''''𝐵) ↔ 𝐵𝐹𝐶))
1614, 15syl5ibcom 244 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))
17 fnfun 6638 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
18 funbrafv2 45725 . . . 4 (Fun 𝐹 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶))
1917, 18syl 17 . . 3 (𝐹 Fn 𝐴 → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶))
2019adantr 481 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝐵𝐹𝐶 → (𝐹''''𝐵) = 𝐶))
2116, 20impbid 211 1 ((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹''''𝐵) = 𝐶𝐵𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  ∃!weu 2561  Vcvv 3473   class class class wbr 5141  Fun wfun 6526   Fn wfn 6527   defAt wdfat 45594  ''''cafv2 45686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6484  df-fun 6534  df-fn 6535  df-dfat 45597  df-afv2 45687
This theorem is referenced by:  fnopafv2b  45727  funbrafv22b  45728
  Copyright terms: Public domain W3C validator