Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fnopfv | Structured version Visualization version GIF version |
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.) |
Ref | Expression |
---|---|
fnopfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 〈𝐵, (𝐹‘𝐵)〉 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 6875 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐵 ∈ dom 𝐹) → 〈𝐵, (𝐹‘𝐵)〉 ∈ 𝐹) | |
2 | 1 | funfni 6489 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → 〈𝐵, (𝐹‘𝐵)〉 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 〈cop 4552 Fn wfn 6380 ‘cfv 6385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pr 5327 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3415 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-sn 4547 df-pr 4549 df-op 4553 df-uni 4825 df-br 5059 df-opab 5121 df-id 5460 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-iota 6343 df-fun 6387 df-fn 6388 df-fv 6393 |
This theorem is referenced by: foeqcnvco 7115 |
Copyright terms: Public domain | W3C validator |