MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopfv Structured version   Visualization version   GIF version

Theorem fnopfv 6901
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
fnopfv ((𝐹 Fn 𝐴𝐵𝐴) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)

Proof of Theorem fnopfv
StepHypRef Expression
1 funfvop 6875 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)
21funfni 6489 1 ((𝐹 Fn 𝐴𝐵𝐴) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110  cop 4552   Fn wfn 6380  cfv 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5197  ax-nul 5204  ax-pr 5327
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3415  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-br 5059  df-opab 5121  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-iota 6343  df-fun 6387  df-fn 6388  df-fv 6393
This theorem is referenced by:  foeqcnvco  7115
  Copyright terms: Public domain W3C validator