MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnopfv Structured version   Visualization version   GIF version

Theorem fnopfv 6600
Description: Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
fnopfv ((𝐹 Fn 𝐴𝐵𝐴) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)

Proof of Theorem fnopfv
StepHypRef Expression
1 funfvop 6578 . 2 ((Fun 𝐹𝐵 ∈ dom 𝐹) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)
21funfni 6224 1 ((𝐹 Fn 𝐴𝐵𝐴) → ⟨𝐵, (𝐹𝐵)⟩ ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2166  cop 4403   Fn wfn 6118  cfv 6123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-iota 6086  df-fun 6125  df-fn 6126  df-fv 6131
This theorem is referenced by:  foeqcnvco  6810
  Copyright terms: Public domain W3C validator