Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2an2r | Structured version Visualization version GIF version |
Description: syl2anr 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) (Proof shortened by Wolf Lammen, 28-Mar-2022.) |
Ref | Expression |
---|---|
syl2an2r.1 | ⊢ (𝜑 → 𝜓) |
syl2an2r.2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
syl2an2r.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2r | ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2r.2 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | syl2an2r.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
3 | syl2an2r.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
5 | 1, 4 | syldan 590 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜏) |
Copyright terms: Public domain | W3C validator |