| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovif12 | Structured version Visualization version GIF version | ||
| Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| ovif12 | ⊢ (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 4478 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 2 | iftrue 4478 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶) | |
| 3 | 1, 2 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = (𝐴𝐹𝐶)) |
| 4 | iftrue 4478 | . . 3 ⊢ (𝜑 → if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)) = (𝐴𝐹𝐶)) | |
| 5 | 3, 4 | eqtr4d 2769 | . 2 ⊢ (𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷))) |
| 6 | iffalse 4481 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 7 | iffalse 4481 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷) | |
| 8 | 6, 7 | oveq12d 7364 | . . 3 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = (𝐵𝐹𝐷)) |
| 9 | iffalse 4481 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)) = (𝐵𝐹𝐷)) | |
| 10 | 8, 9 | eqtr4d 2769 | . 2 ⊢ (¬ 𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷))) |
| 11 | 5, 10 | pm2.61i 182 | 1 ⊢ (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ifcif 4472 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: ofccat 14876 limccnp2 25820 ftc1anclem5 37747 fsuppind 42693 sqrtcval 43744 |
| Copyright terms: Public domain | W3C validator |