MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif12 Structured version   Visualization version   GIF version

Theorem ovif12 7508
Description: Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
ovif12 (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷))

Proof of Theorem ovif12
StepHypRef Expression
1 iftrue 4535 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
2 iftrue 4535 . . . 4 (𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐶)
31, 2oveq12d 7427 . . 3 (𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = (𝐴𝐹𝐶))
4 iftrue 4535 . . 3 (𝜑 → if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)) = (𝐴𝐹𝐶))
53, 4eqtr4d 2776 . 2 (𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)))
6 iffalse 4538 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
7 iffalse 4538 . . . 4 𝜑 → if(𝜑, 𝐶, 𝐷) = 𝐷)
86, 7oveq12d 7427 . . 3 𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = (𝐵𝐹𝐷))
9 iffalse 4538 . . 3 𝜑 → if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)) = (𝐵𝐹𝐷))
108, 9eqtr4d 2776 . 2 𝜑 → (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷)))
115, 10pm2.61i 182 1 (if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  ifcif 4529  (class class class)co 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412
This theorem is referenced by:  ofccat  14916  limccnp2  25409  ftc1anclem5  36565  fsuppind  41162  sqrtcval  42392
  Copyright terms: Public domain W3C validator