| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| Ref | Expression |
|---|---|
| oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
| 2 | df-ov 7349 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | df-ov 7349 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cop 4579 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: oveqi 7359 oveqd 7363 ifov 7447 ovmpodf 7502 ovmpodv2 7504 seqomeq12 8373 mapxpen 9056 seqeq2 13912 relexp0g 14929 relexpsucnnr 14932 cat1 18004 ismgm 18549 mgmsscl 18553 issgrp 18628 ismnddef 18644 grpissubg 19059 isga 19203 isrng 20072 islmod 20797 lmodfopne 20833 mamuval 22308 dmatel 22408 dmatmulcl 22415 scmate 22425 scmateALT 22427 mvmulval 22458 marrepval0 22476 marepvval0 22481 submaval0 22495 mdetleib 22502 mdetleib1 22506 mdet0pr 22507 mdetunilem1 22527 maduval 22553 minmar1val0 22562 cpmatel 22626 mat2pmatval 22639 cpm2mval 22665 decpmatval0 22679 pmatcollpw3lem 22698 mptcoe1matfsupp 22717 mp2pm2mplem4 22724 chpscmat 22757 ispsmet 24219 ismet 24238 isxmet 24239 ishtpy 24898 isphtpy 24907 addsval 27905 mulsval 28048 isgrpo 30477 gidval 30492 grpoinvfval 30502 isablo 30526 vciOLD 30541 isvclem 30557 isnvlem 30590 isphg 30797 fxpval 33134 ofceq 34110 cvmlift2lem13 35359 ismtyval 37839 isass 37885 isexid 37886 elghomlem1OLD 37924 iscom2 38034 iscllaw 48288 iscomlaw 48289 isasslaw 48291 dmatALTbasel 48502 infsubc2 49161 nelsubc3lem 49170 dfswapf2 49361 isthinc 49519 cnelsubclem 49703 lanrcl 49721 ranrcl 49722 rellan 49723 relran 49724 |
| Copyright terms: Public domain | W3C validator |