| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| Ref | Expression |
|---|---|
| oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6875 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
| 2 | df-ov 7408 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | df-ov 7408 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
| 4 | 1, 2, 3 | 3eqtr4g 2795 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4607 ‘cfv 6531 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: oveqi 7418 oveqd 7422 ifov 7508 ovmpodf 7563 ovmpodv2 7565 seqomeq12 8468 mapxpen 9157 seqeq2 14023 relexp0g 15041 relexpsucnnr 15044 cat1 18110 ismgm 18619 mgmsscl 18623 issgrp 18698 ismnddef 18714 grpissubg 19129 isga 19274 isrng 20114 islmod 20821 lmodfopne 20857 mamuval 22331 dmatel 22431 dmatmulcl 22438 scmate 22448 scmateALT 22450 mvmulval 22481 marrepval0 22499 marepvval0 22504 submaval0 22518 mdetleib 22525 mdetleib1 22529 mdet0pr 22530 mdetunilem1 22550 maduval 22576 minmar1val0 22585 cpmatel 22649 mat2pmatval 22662 cpm2mval 22688 decpmatval0 22702 pmatcollpw3lem 22721 mptcoe1matfsupp 22740 mp2pm2mplem4 22747 chpscmat 22780 ispsmet 24243 ismet 24262 isxmet 24263 ishtpy 24922 isphtpy 24931 addsval 27921 mulsval 28064 isgrpo 30478 gidval 30493 grpoinvfval 30503 isablo 30527 vciOLD 30542 isvclem 30558 isnvlem 30591 isphg 30798 ofceq 34128 cvmlift2lem13 35337 ismtyval 37824 isass 37870 isexid 37871 elghomlem1OLD 37909 iscom2 38019 iscllaw 48164 iscomlaw 48165 isasslaw 48167 dmatALTbasel 48378 infsubc2 49028 nelsubc3lem 49037 dfswapf2 49178 isthinc 49305 cnelsubclem 49480 lanrcl 49496 ranrcl 49497 rellan 49498 relran 49499 |
| Copyright terms: Public domain | W3C validator |