Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6755 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
2 | df-ov 7258 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | df-ov 7258 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cop 4564 ‘cfv 6418 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: oveqi 7268 oveqd 7272 ifov 7353 ovmpodf 7407 ovmpodv2 7409 seqomeq12 8255 mapxpen 8879 seqeq2 13653 relexp0g 14661 relexpsucnnr 14664 cat1 17728 ismgm 18242 mgmsscl 18246 issgrp 18291 ismnddef 18302 grpissubg 18690 isga 18812 islmod 20042 lmodfopne 20076 mamuval 21445 dmatel 21550 dmatmulcl 21557 scmate 21567 scmateALT 21569 mvmulval 21600 marrepval0 21618 marepvval0 21623 submaval0 21637 mdetleib 21644 mdetleib1 21648 mdet0pr 21649 mdetunilem1 21669 maduval 21695 minmar1val0 21704 cpmatel 21768 mat2pmatval 21781 cpm2mval 21807 decpmatval0 21821 pmatcollpw3lem 21840 mptcoe1matfsupp 21859 mp2pm2mplem4 21866 chpscmat 21899 ispsmet 23365 ismet 23384 isxmet 23385 ishtpy 24041 isphtpy 24050 isgrpo 28760 gidval 28775 grpoinvfval 28785 isablo 28809 vciOLD 28824 isvclem 28840 isnvlem 28873 isphg 29080 ofceq 31965 cvmlift2lem13 33177 addsval 34053 ismtyval 35885 isass 35931 isexid 35932 elghomlem1OLD 35970 iscom2 36080 iscllaw 45271 iscomlaw 45272 isasslaw 45274 isrng 45322 dmatALTbasel 45631 isthinc 46190 |
Copyright terms: Public domain | W3C validator |