| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| Ref | Expression |
|---|---|
| oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6857 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
| 2 | df-ov 7390 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | df-ov 7390 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4595 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: oveqi 7400 oveqd 7404 ifov 7490 ovmpodf 7545 ovmpodv2 7547 seqomeq12 8422 mapxpen 9107 seqeq2 13970 relexp0g 14988 relexpsucnnr 14991 cat1 18059 ismgm 18568 mgmsscl 18572 issgrp 18647 ismnddef 18663 grpissubg 19078 isga 19223 isrng 20063 islmod 20770 lmodfopne 20806 mamuval 22280 dmatel 22380 dmatmulcl 22387 scmate 22397 scmateALT 22399 mvmulval 22430 marrepval0 22448 marepvval0 22453 submaval0 22467 mdetleib 22474 mdetleib1 22478 mdet0pr 22479 mdetunilem1 22499 maduval 22525 minmar1val0 22534 cpmatel 22598 mat2pmatval 22611 cpm2mval 22637 decpmatval0 22651 pmatcollpw3lem 22670 mptcoe1matfsupp 22689 mp2pm2mplem4 22696 chpscmat 22729 ispsmet 24192 ismet 24211 isxmet 24212 ishtpy 24871 isphtpy 24880 addsval 27869 mulsval 28012 isgrpo 30426 gidval 30441 grpoinvfval 30451 isablo 30475 vciOLD 30490 isvclem 30506 isnvlem 30539 isphg 30746 fxpval 33122 ofceq 34087 cvmlift2lem13 35302 ismtyval 37794 isass 37840 isexid 37841 elghomlem1OLD 37879 iscom2 37989 iscllaw 48177 iscomlaw 48178 isasslaw 48180 dmatALTbasel 48391 infsubc2 49050 nelsubc3lem 49059 dfswapf2 49250 isthinc 49408 cnelsubclem 49592 lanrcl 49610 ranrcl 49611 rellan 49612 relran 49613 |
| Copyright terms: Public domain | W3C validator |