| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| Ref | Expression |
|---|---|
| oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6839 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
| 2 | df-ov 7372 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | df-ov 7372 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4591 ‘cfv 6499 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: oveqi 7382 oveqd 7386 ifov 7470 ovmpodf 7525 ovmpodv2 7527 seqomeq12 8399 mapxpen 9084 seqeq2 13946 relexp0g 14964 relexpsucnnr 14967 cat1 18039 ismgm 18550 mgmsscl 18554 issgrp 18629 ismnddef 18645 grpissubg 19060 isga 19205 isrng 20074 islmod 20802 lmodfopne 20838 mamuval 22313 dmatel 22413 dmatmulcl 22420 scmate 22430 scmateALT 22432 mvmulval 22463 marrepval0 22481 marepvval0 22486 submaval0 22500 mdetleib 22507 mdetleib1 22511 mdet0pr 22512 mdetunilem1 22532 maduval 22558 minmar1val0 22567 cpmatel 22631 mat2pmatval 22644 cpm2mval 22670 decpmatval0 22684 pmatcollpw3lem 22703 mptcoe1matfsupp 22722 mp2pm2mplem4 22729 chpscmat 22762 ispsmet 24225 ismet 24244 isxmet 24245 ishtpy 24904 isphtpy 24913 addsval 27909 mulsval 28052 isgrpo 30476 gidval 30491 grpoinvfval 30501 isablo 30525 vciOLD 30540 isvclem 30556 isnvlem 30589 isphg 30796 fxpval 33137 ofceq 34080 cvmlift2lem13 35295 ismtyval 37787 isass 37833 isexid 37834 elghomlem1OLD 37872 iscom2 37982 iscllaw 48170 iscomlaw 48171 isasslaw 48173 dmatALTbasel 48384 infsubc2 49043 nelsubc3lem 49052 dfswapf2 49243 isthinc 49401 cnelsubclem 49585 lanrcl 49603 ranrcl 49604 rellan 49605 relran 49606 |
| Copyright terms: Public domain | W3C validator |