Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6824 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
2 | df-ov 7340 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | df-ov 7340 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
4 | 1, 2, 3 | 3eqtr4g 2801 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 〈cop 4579 ‘cfv 6479 (class class class)co 7337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-in 3905 df-ss 3915 df-uni 4853 df-br 5093 df-iota 6431 df-fv 6487 df-ov 7340 |
This theorem is referenced by: oveqi 7350 oveqd 7354 ifov 7437 ovmpodf 7491 ovmpodv2 7493 seqomeq12 8355 mapxpen 9008 seqeq2 13826 relexp0g 14832 relexpsucnnr 14835 cat1 17909 ismgm 18424 mgmsscl 18428 issgrp 18473 ismnddef 18484 grpissubg 18871 isga 18993 islmod 20233 lmodfopne 20267 mamuval 21641 dmatel 21748 dmatmulcl 21755 scmate 21765 scmateALT 21767 mvmulval 21798 marrepval0 21816 marepvval0 21821 submaval0 21835 mdetleib 21842 mdetleib1 21846 mdet0pr 21847 mdetunilem1 21867 maduval 21893 minmar1val0 21902 cpmatel 21966 mat2pmatval 21979 cpm2mval 22005 decpmatval0 22019 pmatcollpw3lem 22038 mptcoe1matfsupp 22057 mp2pm2mplem4 22064 chpscmat 22097 ispsmet 23563 ismet 23582 isxmet 23583 ishtpy 24241 isphtpy 24250 isgrpo 29147 gidval 29162 grpoinvfval 29172 isablo 29196 vciOLD 29211 isvclem 29227 isnvlem 29260 isphg 29467 ofceq 32363 cvmlift2lem13 33576 addsval 34222 ismtyval 36071 isass 36117 isexid 36118 elghomlem1OLD 36156 iscom2 36266 iscllaw 45742 iscomlaw 45743 isasslaw 45745 isrng 45793 dmatALTbasel 46102 isthinc 46661 |
Copyright terms: Public domain | W3C validator |