![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6919 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
2 | df-ov 7451 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | df-ov 7451 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 〈cop 4654 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: oveqi 7461 oveqd 7465 ifov 7551 ovmpodf 7606 ovmpodv2 7608 seqomeq12 8510 mapxpen 9209 seqeq2 14056 relexp0g 15071 relexpsucnnr 15074 cat1 18164 ismgm 18679 mgmsscl 18683 issgrp 18758 ismnddef 18774 grpissubg 19186 isga 19331 isrng 20181 islmod 20884 lmodfopne 20920 mamuval 22418 dmatel 22520 dmatmulcl 22527 scmate 22537 scmateALT 22539 mvmulval 22570 marrepval0 22588 marepvval0 22593 submaval0 22607 mdetleib 22614 mdetleib1 22618 mdet0pr 22619 mdetunilem1 22639 maduval 22665 minmar1val0 22674 cpmatel 22738 mat2pmatval 22751 cpm2mval 22777 decpmatval0 22791 pmatcollpw3lem 22810 mptcoe1matfsupp 22829 mp2pm2mplem4 22836 chpscmat 22869 ispsmet 24335 ismet 24354 isxmet 24355 ishtpy 25023 isphtpy 25032 addsval 28013 mulsval 28153 isgrpo 30529 gidval 30544 grpoinvfval 30554 isablo 30578 vciOLD 30593 isvclem 30609 isnvlem 30642 isphg 30849 ofceq 34061 cvmlift2lem13 35283 ismtyval 37760 isass 37806 isexid 37807 elghomlem1OLD 37845 iscom2 37955 iscllaw 47912 iscomlaw 47913 isasslaw 47915 dmatALTbasel 48131 isthinc 48688 |
Copyright terms: Public domain | W3C validator |