| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| Ref | Expression |
|---|---|
| oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6860 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
| 2 | df-ov 7393 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | df-ov 7393 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
| 4 | 1, 2, 3 | 3eqtr4g 2790 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4598 ‘cfv 6514 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: oveqi 7403 oveqd 7407 ifov 7493 ovmpodf 7548 ovmpodv2 7550 seqomeq12 8425 mapxpen 9113 seqeq2 13977 relexp0g 14995 relexpsucnnr 14998 cat1 18066 ismgm 18575 mgmsscl 18579 issgrp 18654 ismnddef 18670 grpissubg 19085 isga 19230 isrng 20070 islmod 20777 lmodfopne 20813 mamuval 22287 dmatel 22387 dmatmulcl 22394 scmate 22404 scmateALT 22406 mvmulval 22437 marrepval0 22455 marepvval0 22460 submaval0 22474 mdetleib 22481 mdetleib1 22485 mdet0pr 22486 mdetunilem1 22506 maduval 22532 minmar1val0 22541 cpmatel 22605 mat2pmatval 22618 cpm2mval 22644 decpmatval0 22658 pmatcollpw3lem 22677 mptcoe1matfsupp 22696 mp2pm2mplem4 22703 chpscmat 22736 ispsmet 24199 ismet 24218 isxmet 24219 ishtpy 24878 isphtpy 24887 addsval 27876 mulsval 28019 isgrpo 30433 gidval 30448 grpoinvfval 30458 isablo 30482 vciOLD 30497 isvclem 30513 isnvlem 30546 isphg 30753 fxpval 33129 ofceq 34094 cvmlift2lem13 35309 ismtyval 37801 isass 37847 isexid 37848 elghomlem1OLD 37886 iscom2 37996 iscllaw 48181 iscomlaw 48182 isasslaw 48184 dmatALTbasel 48395 infsubc2 49054 nelsubc3lem 49063 dfswapf2 49254 isthinc 49412 cnelsubclem 49596 lanrcl 49614 ranrcl 49615 rellan 49616 relran 49617 |
| Copyright terms: Public domain | W3C validator |