Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6782 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
2 | df-ov 7287 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | df-ov 7287 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 〈cop 4568 ‘cfv 6437 (class class class)co 7284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-uni 4841 df-br 5076 df-iota 6395 df-fv 6445 df-ov 7287 |
This theorem is referenced by: oveqi 7297 oveqd 7301 ifov 7384 ovmpodf 7438 ovmpodv2 7440 seqomeq12 8294 mapxpen 8939 seqeq2 13734 relexp0g 14742 relexpsucnnr 14745 cat1 17821 ismgm 18336 mgmsscl 18340 issgrp 18385 ismnddef 18396 grpissubg 18784 isga 18906 islmod 20136 lmodfopne 20170 mamuval 21544 dmatel 21651 dmatmulcl 21658 scmate 21668 scmateALT 21670 mvmulval 21701 marrepval0 21719 marepvval0 21724 submaval0 21738 mdetleib 21745 mdetleib1 21749 mdet0pr 21750 mdetunilem1 21770 maduval 21796 minmar1val0 21805 cpmatel 21869 mat2pmatval 21882 cpm2mval 21908 decpmatval0 21922 pmatcollpw3lem 21941 mptcoe1matfsupp 21960 mp2pm2mplem4 21967 chpscmat 22000 ispsmet 23466 ismet 23485 isxmet 23486 ishtpy 24144 isphtpy 24153 isgrpo 28868 gidval 28883 grpoinvfval 28893 isablo 28917 vciOLD 28932 isvclem 28948 isnvlem 28981 isphg 29188 ofceq 32074 cvmlift2lem13 33286 addsval 34135 ismtyval 35967 isass 36013 isexid 36014 elghomlem1OLD 36052 iscom2 36162 iscllaw 45394 iscomlaw 45395 isasslaw 45397 isrng 45445 dmatALTbasel 45754 isthinc 46313 |
Copyright terms: Public domain | W3C validator |