Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version |
Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
Ref | Expression |
---|---|
oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6716 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
2 | df-ov 7216 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
3 | df-ov 7216 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
4 | 1, 2, 3 | 3eqtr4g 2803 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 〈cop 4547 ‘cfv 6380 (class class class)co 7213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-in 3873 df-ss 3883 df-uni 4820 df-br 5054 df-iota 6338 df-fv 6388 df-ov 7216 |
This theorem is referenced by: oveqi 7226 oveqd 7230 ifov 7311 ovmpodf 7365 ovmpodv2 7367 seqomeq12 8190 mapxpen 8812 seqeq2 13578 relexp0g 14585 relexpsucnnr 14588 cat1 17603 ismgm 18115 mgmsscl 18119 issgrp 18164 ismnddef 18175 grpissubg 18563 isga 18685 islmod 19903 lmodfopne 19937 mamuval 21285 dmatel 21390 dmatmulcl 21397 scmate 21407 scmateALT 21409 mvmulval 21440 marrepval0 21458 marepvval0 21463 submaval0 21477 mdetleib 21484 mdetleib1 21488 mdet0pr 21489 mdetunilem1 21509 maduval 21535 minmar1val0 21544 cpmatel 21608 mat2pmatval 21621 cpm2mval 21647 decpmatval0 21661 pmatcollpw3lem 21680 mptcoe1matfsupp 21699 mp2pm2mplem4 21706 chpscmat 21739 ispsmet 23202 ismet 23221 isxmet 23222 ishtpy 23869 isphtpy 23878 isgrpo 28578 gidval 28593 grpoinvfval 28603 isablo 28627 vciOLD 28642 isvclem 28658 isnvlem 28691 isphg 28898 ofceq 31777 cvmlift2lem13 32990 addsval 33863 ismtyval 35695 isass 35741 isexid 35742 elghomlem1OLD 35780 iscom2 35890 iscllaw 45056 iscomlaw 45057 isasslaw 45059 isrng 45107 dmatALTbasel 45416 isthinc 45975 |
Copyright terms: Public domain | W3C validator |