| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| Ref | Expression |
|---|---|
| oveq | ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹‘〈𝐴, 𝐵〉) = (𝐺‘〈𝐴, 𝐵〉)) | |
| 2 | df-ov 7352 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 3 | df-ov 7352 | . 2 ⊢ (𝐴𝐺𝐵) = (𝐺‘〈𝐴, 𝐵〉) | |
| 4 | 1, 2, 3 | 3eqtr4g 2789 | 1 ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4583 ‘cfv 6482 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: oveqi 7362 oveqd 7366 ifov 7450 ovmpodf 7505 ovmpodv2 7507 seqomeq12 8376 mapxpen 9060 seqeq2 13912 relexp0g 14929 relexpsucnnr 14932 cat1 18004 ismgm 18515 mgmsscl 18519 issgrp 18594 ismnddef 18610 grpissubg 19025 isga 19170 isrng 20039 islmod 20767 lmodfopne 20803 mamuval 22278 dmatel 22378 dmatmulcl 22385 scmate 22395 scmateALT 22397 mvmulval 22428 marrepval0 22446 marepvval0 22451 submaval0 22465 mdetleib 22472 mdetleib1 22476 mdet0pr 22477 mdetunilem1 22497 maduval 22523 minmar1val0 22532 cpmatel 22596 mat2pmatval 22609 cpm2mval 22635 decpmatval0 22649 pmatcollpw3lem 22668 mptcoe1matfsupp 22687 mp2pm2mplem4 22694 chpscmat 22727 ispsmet 24190 ismet 24209 isxmet 24210 ishtpy 24869 isphtpy 24878 addsval 27876 mulsval 28019 isgrpo 30445 gidval 30460 grpoinvfval 30470 isablo 30494 vciOLD 30509 isvclem 30525 isnvlem 30558 isphg 30765 fxpval 33116 ofceq 34080 cvmlift2lem13 35308 ismtyval 37800 isass 37846 isexid 37847 elghomlem1OLD 37885 iscom2 37995 iscllaw 48193 iscomlaw 48194 isasslaw 48196 dmatALTbasel 48407 infsubc2 49066 nelsubc3lem 49075 dfswapf2 49266 isthinc 49424 cnelsubclem 49608 lanrcl 49626 ranrcl 49627 rellan 49628 relran 49629 |
| Copyright terms: Public domain | W3C validator |