MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  firest Structured version   Visualization version   GIF version

Theorem firest 16700
Description: The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
firest (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)

Proof of Theorem firest
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7183 . . . . . 6 (𝐽t 𝐴) ∈ V
2 elfi2 8872 . . . . . 6 ((𝐽t 𝐴) ∈ V → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦))
31, 2ax-mp 5 . . . . 5 (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦)
4 eldifi 4102 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
54adantl 484 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
65elin2d 4175 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
7 elfpw 8820 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) ↔ (𝑦 ⊆ (𝐽t 𝐴) ∧ 𝑦 ∈ Fin))
87simplbi 500 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) → 𝑦 ⊆ (𝐽t 𝐴))
95, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ⊆ (𝐽t 𝐴))
109sseld 3965 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦𝑧 ∈ (𝐽t 𝐴)))
11 elrest 16695 . . . . . . . . . . . 12 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1211adantr 483 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1310, 12sylibd 241 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦 → ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1413ralrimiv 3181 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴))
15 ineq1 4180 . . . . . . . . . . 11 (𝑦 = (𝑓𝑧) → (𝑦𝐴) = ((𝑓𝑧) ∩ 𝐴))
1615eqeq2d 2832 . . . . . . . . . 10 (𝑦 = (𝑓𝑧) → (𝑧 = (𝑦𝐴) ↔ 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
1716ac6sfi 8756 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴)) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
186, 14, 17syl2anc 586 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
19 eldifsni 4715 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2019ad2antlr 725 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ≠ ∅)
21 iinin1 4993 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
2220, 21syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
23 fvex 6677 . . . . . . . . . . . . 13 (fi‘𝐽) ∈ V
24 simpllr 774 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐴 ∈ V)
25 ffn 6508 . . . . . . . . . . . . . . . 16 (𝑓:𝑦𝐽𝑓 Fn 𝑦)
2625adantl 484 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓 Fn 𝑦)
27 fniinfv 6736 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑦 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
2826, 27syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
29 simplll 773 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐽 ∈ V)
30 simpr 487 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓:𝑦𝐽)
316adantr 483 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ∈ Fin)
32 intrnfi 8874 . . . . . . . . . . . . . . 15 ((𝐽 ∈ V ∧ (𝑓:𝑦𝐽𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → ran 𝑓 ∈ (fi‘𝐽))
3329, 30, 20, 31, 32syl13anc 1368 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ran 𝑓 ∈ (fi‘𝐽))
3428, 33eqeltrd 2913 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽))
35 elrestr 16696 . . . . . . . . . . . . 13 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽)) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3623, 24, 34, 35mp3an2i 1462 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3722, 36eqeltrd 2913 . . . . . . . . . . 11 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
38 intiin 4975 . . . . . . . . . . . . 13 𝑦 = 𝑧𝑦 𝑧
39 iineq2 4931 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑧𝑦 𝑧 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4038, 39syl5eq 2868 . . . . . . . . . . . 12 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4140eleq1d 2897 . . . . . . . . . . 11 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → ( 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴)))
4237, 41syl5ibrcom 249 . . . . . . . . . 10 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4342expimpd 456 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ((𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4443exlimdv 1930 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4518, 44mpd 15 . . . . . . 7 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴))
46 eleq1 2900 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4745, 46syl5ibrcom 249 . . . . . 6 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
4847rexlimdva 3284 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
493, 48syl5bi 244 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) → 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
50 simpr 487 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V)
51 elrest 16695 . . . . . 6 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
5223, 50, 51sylancr 589 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
53 elfi2 8872 . . . . . . . 8 (𝐽 ∈ V → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
5453adantr 483 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
55 eldifsni 4715 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
5655adantl 484 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ≠ ∅)
57 iinin1 4993 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5856, 57syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5938ineq1i 4184 . . . . . . . . . . . 12 ( 𝑦𝐴) = ( 𝑧𝑦 𝑧𝐴)
6058, 59syl6eqr 2874 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑦𝐴))
61 ovexd 7185 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝐽t 𝐴) ∈ V)
62 eldifi 4102 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
6362adantl 484 . . . . . . . . . . . . . 14 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
64 elfpw 8820 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑦𝐽𝑦 ∈ Fin))
6564simplbi 500 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) → 𝑦𝐽)
6663, 65syl 17 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦𝐽)
67 elrestr 16696 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
68673expa 1114 . . . . . . . . . . . . . . 15 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
6968ralrimiva 3182 . . . . . . . . . . . . . 14 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
7069adantr 483 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
71 ssralv 4032 . . . . . . . . . . . . 13 (𝑦𝐽 → (∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴)))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴))
7363elin2d 4175 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
74 iinfi 8875 . . . . . . . . . . . 12 (((𝐽t 𝐴) ∈ V ∧ (∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7561, 72, 56, 73, 74syl13anc 1368 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7660, 75eqeltrrd 2914 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴)))
77 eleq1 2900 . . . . . . . . . 10 (𝑥 = ( 𝑦𝐴) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴))))
7876, 77syl5ibrcom 249 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
79 ineq1 4180 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧𝐴) = ( 𝑦𝐴))
8079eqeq2d 2832 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) ↔ 𝑥 = ( 𝑦𝐴)))
8180imbi1d 344 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))) ↔ (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8278, 81syl5ibrcom 249 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8382rexlimdva 3284 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8454, 83sylbid 242 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8584rexlimdv 3283 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8652, 85sylbid 242 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8749, 86impbid 214 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
8887eqrdv 2819 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
89 fi0 8878 . . 3 (fi‘∅) = ∅
90 relxp 5567 . . . . . 6 Rel (V × V)
91 restfn 16692 . . . . . . . 8 t Fn (V × V)
92 fndm 6449 . . . . . . . 8 ( ↾t Fn (V × V) → dom ↾t = (V × V))
9391, 92ax-mp 5 . . . . . . 7 dom ↾t = (V × V)
9493releqi 5646 . . . . . 6 (Rel dom ↾t ↔ Rel (V × V))
9590, 94mpbir 233 . . . . 5 Rel dom ↾t
9695ovprc 7188 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
9796fveq2d 6668 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = (fi‘∅))
98 ianor 978 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) ↔ (¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V))
99 fvprc 6657 . . . . . . 7 𝐽 ∈ V → (fi‘𝐽) = ∅)
10099oveq1d 7165 . . . . . 6 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = (∅ ↾t 𝐴))
101 0rest 16697 . . . . . 6 (∅ ↾t 𝐴) = ∅
102100, 101syl6eq 2872 . . . . 5 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
10395ovprc2 7190 . . . . 5 𝐴 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
104102, 103jaoi 853 . . . 4 ((¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10598, 104sylbi 219 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10689, 97, 1053eqtr4a 2882 . 2 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
10788, 106pm2.61i 184 1 (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cdif 3932  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560   cint 4868   ciin 4912   × cxp 5547  dom cdm 5549  ran crn 5550  Rel wrel 5554   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  ficfi 8868  t crest 16688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-1o 8096  df-er 8283  df-en 8504  df-dom 8505  df-fin 8507  df-fi 8869  df-rest 16690
This theorem is referenced by:  ordtrest2  21806  xkoptsub  22256  ordtrest2NEW  31161  ptrest  34885
  Copyright terms: Public domain W3C validator