MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  firest Structured version   Visualization version   GIF version

Theorem firest 17413
Description: The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
firest (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)

Proof of Theorem firest
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7450 . . . . . 6 (𝐽t 𝐴) ∈ V
2 elfi2 9437 . . . . . 6 ((𝐽t 𝐴) ∈ V → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦))
31, 2ax-mp 5 . . . . 5 (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦)
4 eldifi 4124 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
54adantl 480 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
65elin2d 4198 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
7 elfpw 9378 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) ↔ (𝑦 ⊆ (𝐽t 𝐴) ∧ 𝑦 ∈ Fin))
87simplbi 496 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) → 𝑦 ⊆ (𝐽t 𝐴))
95, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ⊆ (𝐽t 𝐴))
109sseld 3976 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦𝑧 ∈ (𝐽t 𝐴)))
11 elrest 17408 . . . . . . . . . . . 12 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1211adantr 479 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1310, 12sylibd 238 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦 → ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1413ralrimiv 3135 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴))
15 ineq1 4204 . . . . . . . . . . 11 (𝑦 = (𝑓𝑧) → (𝑦𝐴) = ((𝑓𝑧) ∩ 𝐴))
1615eqeq2d 2736 . . . . . . . . . 10 (𝑦 = (𝑓𝑧) → (𝑧 = (𝑦𝐴) ↔ 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
1716ac6sfi 9310 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴)) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
186, 14, 17syl2anc 582 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
19 eldifsni 4794 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2019ad2antlr 725 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ≠ ∅)
21 iinin1 5082 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
2220, 21syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
23 fvex 6907 . . . . . . . . . . . . 13 (fi‘𝐽) ∈ V
24 simpllr 774 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐴 ∈ V)
25 ffn 6721 . . . . . . . . . . . . . . . 16 (𝑓:𝑦𝐽𝑓 Fn 𝑦)
2625adantl 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓 Fn 𝑦)
27 fniinfv 6973 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑦 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
2826, 27syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
29 simplll 773 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐽 ∈ V)
30 simpr 483 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓:𝑦𝐽)
316adantr 479 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ∈ Fin)
32 intrnfi 9439 . . . . . . . . . . . . . . 15 ((𝐽 ∈ V ∧ (𝑓:𝑦𝐽𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → ran 𝑓 ∈ (fi‘𝐽))
3329, 30, 20, 31, 32syl13anc 1369 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ran 𝑓 ∈ (fi‘𝐽))
3428, 33eqeltrd 2825 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽))
35 elrestr 17409 . . . . . . . . . . . . 13 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽)) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3623, 24, 34, 35mp3an2i 1462 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3722, 36eqeltrd 2825 . . . . . . . . . . 11 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
38 intiin 5062 . . . . . . . . . . . . 13 𝑦 = 𝑧𝑦 𝑧
39 iineq2 5016 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑧𝑦 𝑧 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4038, 39eqtrid 2777 . . . . . . . . . . . 12 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4140eleq1d 2810 . . . . . . . . . . 11 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → ( 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴)))
4237, 41syl5ibrcom 246 . . . . . . . . . 10 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4342expimpd 452 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ((𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4443exlimdv 1928 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4518, 44mpd 15 . . . . . . 7 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴))
46 eleq1 2813 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4745, 46syl5ibrcom 246 . . . . . 6 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
4847rexlimdva 3145 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
493, 48biimtrid 241 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) → 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
50 simpr 483 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V)
51 elrest 17408 . . . . . 6 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
5223, 50, 51sylancr 585 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
53 elfi2 9437 . . . . . . . 8 (𝐽 ∈ V → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
5453adantr 479 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
55 eldifsni 4794 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
5655adantl 480 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ≠ ∅)
57 iinin1 5082 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5856, 57syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5938ineq1i 4207 . . . . . . . . . . . 12 ( 𝑦𝐴) = ( 𝑧𝑦 𝑧𝐴)
6058, 59eqtr4di 2783 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑦𝐴))
61 ovexd 7452 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝐽t 𝐴) ∈ V)
62 eldifi 4124 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
6362adantl 480 . . . . . . . . . . . . . 14 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
64 elfpw 9378 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑦𝐽𝑦 ∈ Fin))
6564simplbi 496 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) → 𝑦𝐽)
6663, 65syl 17 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦𝐽)
67 elrestr 17409 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
68673expa 1115 . . . . . . . . . . . . . . 15 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
6968ralrimiva 3136 . . . . . . . . . . . . . 14 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
7069adantr 479 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
71 ssralv 4046 . . . . . . . . . . . . 13 (𝑦𝐽 → (∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴)))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴))
7363elin2d 4198 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
74 iinfi 9440 . . . . . . . . . . . 12 (((𝐽t 𝐴) ∈ V ∧ (∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7561, 72, 56, 73, 74syl13anc 1369 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7660, 75eqeltrrd 2826 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴)))
77 eleq1 2813 . . . . . . . . . 10 (𝑥 = ( 𝑦𝐴) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴))))
7876, 77syl5ibrcom 246 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
79 ineq1 4204 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧𝐴) = ( 𝑦𝐴))
8079eqeq2d 2736 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) ↔ 𝑥 = ( 𝑦𝐴)))
8180imbi1d 340 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))) ↔ (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8278, 81syl5ibrcom 246 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8382rexlimdva 3145 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8454, 83sylbid 239 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8584rexlimdv 3143 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8652, 85sylbid 239 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8749, 86impbid 211 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
8887eqrdv 2723 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
89 fi0 9443 . . 3 (fi‘∅) = ∅
90 relxp 5695 . . . . . 6 Rel (V × V)
91 restfn 17405 . . . . . . . 8 t Fn (V × V)
9291fndmi 6657 . . . . . . 7 dom ↾t = (V × V)
9392releqi 5778 . . . . . 6 (Rel dom ↾t ↔ Rel (V × V))
9490, 93mpbir 230 . . . . 5 Rel dom ↾t
9594ovprc 7455 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
9695fveq2d 6898 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = (fi‘∅))
97 ianor 979 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) ↔ (¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V))
98 fvprc 6886 . . . . . . 7 𝐽 ∈ V → (fi‘𝐽) = ∅)
9998oveq1d 7432 . . . . . 6 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = (∅ ↾t 𝐴))
100 0rest 17410 . . . . . 6 (∅ ↾t 𝐴) = ∅
10199, 100eqtrdi 2781 . . . . 5 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
10294ovprc2 7457 . . . . 5 𝐴 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
103101, 102jaoi 855 . . . 4 ((¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10497, 103sylbi 216 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10589, 96, 1043eqtr4a 2791 . 2 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
10688, 105pm2.61i 182 1 (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1533  wex 1773  wcel 2098  wne 2930  wral 3051  wrex 3060  Vcvv 3463  cdif 3942  cin 3944  wss 3945  c0 4323  𝒫 cpw 4603  {csn 4629   cint 4949   ciin 4997   × cxp 5675  dom cdm 5677  ran crn 5678  Rel wrel 5682   Fn wfn 6542  wf 6543  cfv 6547  (class class class)co 7417  Fincfn 8962  ficfi 9433  t crest 17401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-fin 8966  df-fi 9434  df-rest 17403
This theorem is referenced by:  ordtrest2  23138  xkoptsub  23588  ordtrest2NEW  33594  ptrest  37162
  Copyright terms: Public domain W3C validator