MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  firest Structured version   Visualization version   GIF version

Theorem firest 17333
Description: The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
firest (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)

Proof of Theorem firest
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7379 . . . . . 6 (𝐽t 𝐴) ∈ V
2 elfi2 9298 . . . . . 6 ((𝐽t 𝐴) ∈ V → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦))
31, 2ax-mp 5 . . . . 5 (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦)
4 eldifi 4081 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
54adantl 481 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
65elin2d 4155 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
7 elfpw 9238 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) ↔ (𝑦 ⊆ (𝐽t 𝐴) ∧ 𝑦 ∈ Fin))
87simplbi 497 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) → 𝑦 ⊆ (𝐽t 𝐴))
95, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ⊆ (𝐽t 𝐴))
109sseld 3933 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦𝑧 ∈ (𝐽t 𝐴)))
11 elrest 17328 . . . . . . . . . . . 12 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1211adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1310, 12sylibd 239 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦 → ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1413ralrimiv 3123 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴))
15 ineq1 4163 . . . . . . . . . . 11 (𝑦 = (𝑓𝑧) → (𝑦𝐴) = ((𝑓𝑧) ∩ 𝐴))
1615eqeq2d 2742 . . . . . . . . . 10 (𝑦 = (𝑓𝑧) → (𝑧 = (𝑦𝐴) ↔ 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
1716ac6sfi 9168 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴)) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
186, 14, 17syl2anc 584 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
19 eldifsni 4742 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2019ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ≠ ∅)
21 iinin1 5027 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
2220, 21syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
23 fvex 6835 . . . . . . . . . . . . 13 (fi‘𝐽) ∈ V
24 simpllr 775 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐴 ∈ V)
25 ffn 6651 . . . . . . . . . . . . . . . 16 (𝑓:𝑦𝐽𝑓 Fn 𝑦)
2625adantl 481 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓 Fn 𝑦)
27 fniinfv 6900 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑦 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
2826, 27syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
29 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐽 ∈ V)
30 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓:𝑦𝐽)
316adantr 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ∈ Fin)
32 intrnfi 9300 . . . . . . . . . . . . . . 15 ((𝐽 ∈ V ∧ (𝑓:𝑦𝐽𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → ran 𝑓 ∈ (fi‘𝐽))
3329, 30, 20, 31, 32syl13anc 1374 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ran 𝑓 ∈ (fi‘𝐽))
3428, 33eqeltrd 2831 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽))
35 elrestr 17329 . . . . . . . . . . . . 13 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽)) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3623, 24, 34, 35mp3an2i 1468 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3722, 36eqeltrd 2831 . . . . . . . . . . 11 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
38 intiin 5008 . . . . . . . . . . . . 13 𝑦 = 𝑧𝑦 𝑧
39 iineq2 4962 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑧𝑦 𝑧 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4038, 39eqtrid 2778 . . . . . . . . . . . 12 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4140eleq1d 2816 . . . . . . . . . . 11 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → ( 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴)))
4237, 41syl5ibrcom 247 . . . . . . . . . 10 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4342expimpd 453 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ((𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4443exlimdv 1934 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4518, 44mpd 15 . . . . . . 7 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴))
46 eleq1 2819 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4745, 46syl5ibrcom 247 . . . . . 6 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
4847rexlimdva 3133 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
493, 48biimtrid 242 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) → 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
50 simpr 484 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V)
51 elrest 17328 . . . . . 6 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
5223, 50, 51sylancr 587 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
53 elfi2 9298 . . . . . . . 8 (𝐽 ∈ V → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
5453adantr 480 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
55 eldifsni 4742 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
5655adantl 481 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ≠ ∅)
57 iinin1 5027 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5856, 57syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5938ineq1i 4166 . . . . . . . . . . . 12 ( 𝑦𝐴) = ( 𝑧𝑦 𝑧𝐴)
6058, 59eqtr4di 2784 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑦𝐴))
61 ovexd 7381 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝐽t 𝐴) ∈ V)
62 eldifi 4081 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
6362adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
64 elfpw 9238 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑦𝐽𝑦 ∈ Fin))
6564simplbi 497 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) → 𝑦𝐽)
6663, 65syl 17 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦𝐽)
67 elrestr 17329 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
68673expa 1118 . . . . . . . . . . . . . . 15 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
6968ralrimiva 3124 . . . . . . . . . . . . . 14 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
7069adantr 480 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
71 ssralv 4003 . . . . . . . . . . . . 13 (𝑦𝐽 → (∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴)))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴))
7363elin2d 4155 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
74 iinfi 9301 . . . . . . . . . . . 12 (((𝐽t 𝐴) ∈ V ∧ (∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7561, 72, 56, 73, 74syl13anc 1374 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7660, 75eqeltrrd 2832 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴)))
77 eleq1 2819 . . . . . . . . . 10 (𝑥 = ( 𝑦𝐴) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴))))
7876, 77syl5ibrcom 247 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
79 ineq1 4163 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧𝐴) = ( 𝑦𝐴))
8079eqeq2d 2742 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) ↔ 𝑥 = ( 𝑦𝐴)))
8180imbi1d 341 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))) ↔ (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8278, 81syl5ibrcom 247 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8382rexlimdva 3133 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8454, 83sylbid 240 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8584rexlimdv 3131 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8652, 85sylbid 240 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8749, 86impbid 212 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
8887eqrdv 2729 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
89 fi0 9304 . . 3 (fi‘∅) = ∅
90 relxp 5634 . . . . . 6 Rel (V × V)
91 restfn 17325 . . . . . . . 8 t Fn (V × V)
9291fndmi 6585 . . . . . . 7 dom ↾t = (V × V)
9392releqi 5718 . . . . . 6 (Rel dom ↾t ↔ Rel (V × V))
9490, 93mpbir 231 . . . . 5 Rel dom ↾t
9594ovprc 7384 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
9695fveq2d 6826 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = (fi‘∅))
97 ianor 983 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) ↔ (¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V))
98 fvprc 6814 . . . . . . 7 𝐽 ∈ V → (fi‘𝐽) = ∅)
9998oveq1d 7361 . . . . . 6 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = (∅ ↾t 𝐴))
100 0rest 17330 . . . . . 6 (∅ ↾t 𝐴) = ∅
10199, 100eqtrdi 2782 . . . . 5 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
10294ovprc2 7386 . . . . 5 𝐴 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
103101, 102jaoi 857 . . . 4 ((¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10497, 103sylbi 217 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10589, 96, 1043eqtr4a 2792 . 2 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
10688, 105pm2.61i 182 1 (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3899  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576   cint 4897   ciin 4942   × cxp 5614  dom cdm 5616  ran crn 5617  Rel wrel 5621   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  ficfi 9294  t crest 17321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-en 8870  df-dom 8871  df-fin 8873  df-fi 9295  df-rest 17323
This theorem is referenced by:  ordtrest2  23117  xkoptsub  23567  ordtrest2NEW  33931  ptrest  37658
  Copyright terms: Public domain W3C validator