MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  firest Structured version   Visualization version   GIF version

Theorem firest 17401
Description: The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
firest (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)

Proof of Theorem firest
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7422 . . . . . 6 (𝐽t 𝐴) ∈ V
2 elfi2 9371 . . . . . 6 ((𝐽t 𝐴) ∈ V → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦))
31, 2ax-mp 5 . . . . 5 (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦)
4 eldifi 4096 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
54adantl 481 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin))
65elin2d 4170 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
7 elfpw 9311 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) ↔ (𝑦 ⊆ (𝐽t 𝐴) ∧ 𝑦 ∈ Fin))
87simplbi 497 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 (𝐽t 𝐴) ∩ Fin) → 𝑦 ⊆ (𝐽t 𝐴))
95, 8syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ⊆ (𝐽t 𝐴))
109sseld 3947 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦𝑧 ∈ (𝐽t 𝐴)))
11 elrest 17396 . . . . . . . . . . . 12 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1211adantr 480 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧 ∈ (𝐽t 𝐴) ↔ ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1310, 12sylibd 239 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑧𝑦 → ∃𝑦𝐽 𝑧 = (𝑦𝐴)))
1413ralrimiv 3125 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴))
15 ineq1 4178 . . . . . . . . . . 11 (𝑦 = (𝑓𝑧) → (𝑦𝐴) = ((𝑓𝑧) ∩ 𝐴))
1615eqeq2d 2741 . . . . . . . . . 10 (𝑦 = (𝑓𝑧) → (𝑧 = (𝑦𝐴) ↔ 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
1716ac6sfi 9237 . . . . . . . . 9 ((𝑦 ∈ Fin ∧ ∀𝑧𝑦𝑦𝐽 𝑧 = (𝑦𝐴)) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
186, 14, 17syl2anc 584 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)))
19 eldifsni 4756 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2019ad2antlr 727 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ≠ ∅)
21 iinin1 5045 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
2220, 21syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) = ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴))
23 fvex 6873 . . . . . . . . . . . . 13 (fi‘𝐽) ∈ V
24 simpllr 775 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐴 ∈ V)
25 ffn 6690 . . . . . . . . . . . . . . . 16 (𝑓:𝑦𝐽𝑓 Fn 𝑦)
2625adantl 481 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓 Fn 𝑦)
27 fniinfv 6941 . . . . . . . . . . . . . . 15 (𝑓 Fn 𝑦 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
2826, 27syl 17 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) = ran 𝑓)
29 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝐽 ∈ V)
30 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑓:𝑦𝐽)
316adantr 480 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑦 ∈ Fin)
32 intrnfi 9373 . . . . . . . . . . . . . . 15 ((𝐽 ∈ V ∧ (𝑓:𝑦𝐽𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → ran 𝑓 ∈ (fi‘𝐽))
3329, 30, 20, 31, 32syl13anc 1374 . . . . . . . . . . . . . 14 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ran 𝑓 ∈ (fi‘𝐽))
3428, 33eqeltrd 2829 . . . . . . . . . . . . 13 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽))
35 elrestr 17397 . . . . . . . . . . . . 13 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝑦 (𝑓𝑧) ∈ (fi‘𝐽)) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3623, 24, 34, 35mp3an2i 1468 . . . . . . . . . . . 12 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → ( 𝑧𝑦 (𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
3722, 36eqeltrd 2829 . . . . . . . . . . 11 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴))
38 intiin 5025 . . . . . . . . . . . . 13 𝑦 = 𝑧𝑦 𝑧
39 iineq2 4978 . . . . . . . . . . . . 13 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑧𝑦 𝑧 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4038, 39eqtrid 2777 . . . . . . . . . . . 12 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 = 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴))
4140eleq1d 2814 . . . . . . . . . . 11 (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → ( 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑧𝑦 ((𝑓𝑧) ∩ 𝐴) ∈ ((fi‘𝐽) ↾t 𝐴)))
4237, 41syl5ibrcom 247 . . . . . . . . . 10 ((((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) ∧ 𝑓:𝑦𝐽) → (∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4342expimpd 453 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → ((𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4443exlimdv 1933 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (∃𝑓(𝑓:𝑦𝐽 ∧ ∀𝑧𝑦 𝑧 = ((𝑓𝑧) ∩ 𝐴)) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4518, 44mpd 15 . . . . . . 7 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴))
46 eleq1 2817 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ 𝑦 ∈ ((fi‘𝐽) ↾t 𝐴)))
4745, 46syl5ibrcom 247 . . . . . 6 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})) → (𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
4847rexlimdva 3135 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 (𝐽t 𝐴) ∩ Fin) ∖ {∅})𝑥 = 𝑦𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
493, 48biimtrid 242 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) → 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
50 simpr 484 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → 𝐴 ∈ V)
51 elrest 17396 . . . . . 6 (((fi‘𝐽) ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
5223, 50, 51sylancr 587 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) ↔ ∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴)))
53 elfi2 9371 . . . . . . . 8 (𝐽 ∈ V → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
5453adantr 480 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) ↔ ∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦))
55 eldifsni 4756 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
5655adantl 481 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ≠ ∅)
57 iinin1 5045 . . . . . . . . . . . . 13 (𝑦 ≠ ∅ → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5856, 57syl 17 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑧𝑦 𝑧𝐴))
5938ineq1i 4181 . . . . . . . . . . . 12 ( 𝑦𝐴) = ( 𝑧𝑦 𝑧𝐴)
6058, 59eqtr4di 2783 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) = ( 𝑦𝐴))
61 ovexd 7424 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝐽t 𝐴) ∈ V)
62 eldifi 4096 . . . . . . . . . . . . . . 15 (𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅}) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
6362adantl 481 . . . . . . . . . . . . . 14 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ (𝒫 𝐽 ∩ Fin))
64 elfpw 9311 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑦𝐽𝑦 ∈ Fin))
6564simplbi 497 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝒫 𝐽 ∩ Fin) → 𝑦𝐽)
6663, 65syl 17 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦𝐽)
67 elrestr 17397 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ V ∧ 𝐴 ∈ V ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
68673expa 1118 . . . . . . . . . . . . . . 15 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑧𝐽) → (𝑧𝐴) ∈ (𝐽t 𝐴))
6968ralrimiva 3126 . . . . . . . . . . . . . 14 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
7069adantr 480 . . . . . . . . . . . . 13 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴))
71 ssralv 4017 . . . . . . . . . . . . 13 (𝑦𝐽 → (∀𝑧𝐽 (𝑧𝐴) ∈ (𝐽t 𝐴) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴)))
7266, 70, 71sylc 65 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴))
7363elin2d 4170 . . . . . . . . . . . 12 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑦 ∈ Fin)
74 iinfi 9374 . . . . . . . . . . . 12 (((𝐽t 𝐴) ∈ V ∧ (∀𝑧𝑦 (𝑧𝐴) ∈ (𝐽t 𝐴) ∧ 𝑦 ≠ ∅ ∧ 𝑦 ∈ Fin)) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7561, 72, 56, 73, 74syl13anc 1374 . . . . . . . . . . 11 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → 𝑧𝑦 (𝑧𝐴) ∈ (fi‘(𝐽t 𝐴)))
7660, 75eqeltrrd 2830 . . . . . . . . . 10 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴)))
77 eleq1 2817 . . . . . . . . . 10 (𝑥 = ( 𝑦𝐴) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ ( 𝑦𝐴) ∈ (fi‘(𝐽t 𝐴))))
7876, 77syl5ibrcom 247 . . . . . . . . 9 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
79 ineq1 4178 . . . . . . . . . . 11 (𝑧 = 𝑦 → (𝑧𝐴) = ( 𝑦𝐴))
8079eqeq2d 2741 . . . . . . . . . 10 (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) ↔ 𝑥 = ( 𝑦𝐴)))
8180imbi1d 341 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))) ↔ (𝑥 = ( 𝑦𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8278, 81syl5ibrcom 247 . . . . . . . 8 (((𝐽 ∈ V ∧ 𝐴 ∈ V) ∧ 𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})) → (𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8382rexlimdva 3135 . . . . . . 7 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑦 ∈ ((𝒫 𝐽 ∩ Fin) ∖ {∅})𝑧 = 𝑦 → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8454, 83sylbid 240 . . . . . 6 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑧 ∈ (fi‘𝐽) → (𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴)))))
8584rexlimdv 3133 . . . . 5 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (∃𝑧 ∈ (fi‘𝐽)𝑥 = (𝑧𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8652, 85sylbid 240 . . . 4 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ ((fi‘𝐽) ↾t 𝐴) → 𝑥 ∈ (fi‘(𝐽t 𝐴))))
8749, 86impbid 212 . . 3 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ (fi‘(𝐽t 𝐴)) ↔ 𝑥 ∈ ((fi‘𝐽) ↾t 𝐴)))
8887eqrdv 2728 . 2 ((𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
89 fi0 9377 . . 3 (fi‘∅) = ∅
90 relxp 5658 . . . . . 6 Rel (V × V)
91 restfn 17393 . . . . . . . 8 t Fn (V × V)
9291fndmi 6624 . . . . . . 7 dom ↾t = (V × V)
9392releqi 5742 . . . . . 6 (Rel dom ↾t ↔ Rel (V × V))
9490, 93mpbir 231 . . . . 5 Rel dom ↾t
9594ovprc 7427 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (𝐽t 𝐴) = ∅)
9695fveq2d 6864 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = (fi‘∅))
97 ianor 983 . . . 4 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) ↔ (¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V))
98 fvprc 6852 . . . . . . 7 𝐽 ∈ V → (fi‘𝐽) = ∅)
9998oveq1d 7404 . . . . . 6 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = (∅ ↾t 𝐴))
100 0rest 17398 . . . . . 6 (∅ ↾t 𝐴) = ∅
10199, 100eqtrdi 2781 . . . . 5 𝐽 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
10294ovprc2 7429 . . . . 5 𝐴 ∈ V → ((fi‘𝐽) ↾t 𝐴) = ∅)
103101, 102jaoi 857 . . . 4 ((¬ 𝐽 ∈ V ∨ ¬ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10497, 103sylbi 217 . . 3 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → ((fi‘𝐽) ↾t 𝐴) = ∅)
10589, 96, 1043eqtr4a 2791 . 2 (¬ (𝐽 ∈ V ∧ 𝐴 ∈ V) → (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴))
10688, 105pm2.61i 182 1 (fi‘(𝐽t 𝐴)) = ((fi‘𝐽) ↾t 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3913  cin 3915  wss 3916  c0 4298  𝒫 cpw 4565  {csn 4591   cint 4912   ciin 4958   × cxp 5638  dom cdm 5640  ran crn 5641  Rel wrel 5645   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  Fincfn 8920  ficfi 9367  t crest 17389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-1o 8436  df-en 8921  df-dom 8922  df-fin 8924  df-fi 9368  df-rest 17391
This theorem is referenced by:  ordtrest2  23097  xkoptsub  23547  ordtrest2NEW  33919  ptrest  37608
  Copyright terms: Public domain W3C validator