MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2i Structured version   Visualization version   GIF version

Theorem iineq2i 4926
Description: Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.)
Hypothesis
Ref Expression
iuneq2i.1 (𝑥𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iineq2i 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶

Proof of Theorem iineq2i
StepHypRef Expression
1 iineq2 4924 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
2 iuneq2i.1 . 2 (𝑥𝐴𝐵 = 𝐶)
31, 2mprg 3075 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110   ciin 4905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-iin 4907
This theorem is referenced by:  iinrab  4977  iinin1  4987  diaintclN  38809  dibintclN  38918  dihintcl  39095  imaiinfv  40218  smflimlem3  43980
  Copyright terms: Public domain W3C validator