MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2i Structured version   Visualization version   GIF version

Theorem iineq2i 5009
Description: Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.)
Hypothesis
Ref Expression
iuneq2i.1 (𝑥𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iineq2i 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶

Proof of Theorem iineq2i
StepHypRef Expression
1 iineq2 5007 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
2 iuneq2i.1 . 2 (𝑥𝐴𝐵 = 𝐶)
31, 2mprg 3059 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   ciin 4988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-iin 4990
This theorem is referenced by:  iinrab  5062  iinin1  5072  diaintclN  40385  dibintclN  40494  dihintcl  40671  imaiinfv  41886  smflimlem3  45940
  Copyright terms: Public domain W3C validator