| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iineq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.) |
| Ref | Expression |
|---|---|
| iuneq2i.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iineq2i | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iineq2 4960 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶) | |
| 2 | iuneq2i.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 3 | 1, 2 | mprg 3053 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ 𝑥 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ ciin 4940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-iin 4942 |
| This theorem is referenced by: iinrab 5015 iinin1 5025 diaintclN 41167 dibintclN 41276 dihintcl 41453 imaiinfv 42796 smflimlem3 46881 |
| Copyright terms: Public domain | W3C validator |