Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iineq2i Structured version   Visualization version   GIF version

Theorem iineq2i 4904
 Description: Equality inference for indexed intersection. (Contributed by NM, 22-Oct-2003.)
Hypothesis
Ref Expression
iuneq2i.1 (𝑥𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iineq2i 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶

Proof of Theorem iineq2i
StepHypRef Expression
1 iineq2 4902 . 2 (∀𝑥𝐴 𝐵 = 𝐶 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶)
2 iuneq2i.1 . 2 (𝑥𝐴𝐵 = 𝐶)
31, 2mprg 3120 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐶
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  ∩ ciin 4883 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ral 3111  df-iin 4885 This theorem is referenced by:  iinrab  4955  iinin1  4965  diaintclN  38373  dibintclN  38482  dihintcl  38659  imaiinfv  39677  smflimlem3  43449
 Copyright terms: Public domain W3C validator