Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssdf Structured version   Visualization version   GIF version

Theorem iinssdf 42577
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinssdf.a 𝑥𝐴
iinssdf.n 𝑥𝑋
iinssdf.c 𝑥𝐶
iinssdf.d 𝑥𝐷
iinssdf.x (𝜑𝑋𝐴)
iinssdf.b (𝑥 = 𝑋𝐵 = 𝐷)
iinssdf.s (𝜑𝐷𝐶)
Assertion
Ref Expression
iinssdf (𝜑 𝑥𝐴 𝐵𝐶)

Proof of Theorem iinssdf
StepHypRef Expression
1 iinssdf.x . . 3 (𝜑𝑋𝐴)
2 iinssdf.s . . 3 (𝜑𝐷𝐶)
3 iinssdf.d . . . . 5 𝑥𝐷
4 iinssdf.c . . . . 5 𝑥𝐶
53, 4nfss 3909 . . . 4 𝑥 𝐷𝐶
6 iinssdf.n . . . 4 𝑥𝑋
7 iinssdf.a . . . 4 𝑥𝐴
8 iinssdf.b . . . . 5 (𝑥 = 𝑋𝐵 = 𝐷)
98sseq1d 3948 . . . 4 (𝑥 = 𝑋 → (𝐵𝐶𝐷𝐶))
105, 6, 7, 9rspcef 42509 . . 3 ((𝑋𝐴𝐷𝐶) → ∃𝑥𝐴 𝐵𝐶)
111, 2, 10syl2anc 583 . 2 (𝜑 → ∃𝑥𝐴 𝐵𝐶)
124iinssf 42576 . 2 (∃𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵𝐶)
1311, 12syl 17 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wnfc 2886  wrex 3064  wss 3883   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-iin 4924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator