|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iinssdf | Structured version Visualization version GIF version | ||
| Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| iinssdf.a | ⊢ Ⅎ𝑥𝐴 | 
| iinssdf.n | ⊢ Ⅎ𝑥𝑋 | 
| iinssdf.c | ⊢ Ⅎ𝑥𝐶 | 
| iinssdf.d | ⊢ Ⅎ𝑥𝐷 | 
| iinssdf.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| iinssdf.b | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) | 
| iinssdf.s | ⊢ (𝜑 → 𝐷 ⊆ 𝐶) | 
| Ref | Expression | 
|---|---|
| iinssdf | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iinssdf.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | iinssdf.s | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐶) | |
| 3 | iinssdf.d | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
| 4 | iinssdf.c | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 5 | 3, 4 | nfss 3976 | . . . 4 ⊢ Ⅎ𝑥 𝐷 ⊆ 𝐶 | 
| 6 | iinssdf.n | . . . 4 ⊢ Ⅎ𝑥𝑋 | |
| 7 | iinssdf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 8 | iinssdf.b | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) | |
| 9 | 8 | sseq1d 4015 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐵 ⊆ 𝐶 ↔ 𝐷 ⊆ 𝐶)) | 
| 10 | 5, 6, 7, 9 | rspcef 45077 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶) → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | 
| 11 | 1, 2, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | 
| 12 | 4 | iinssf 45143 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | 
| 13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2890 ∃wrex 3070 ⊆ wss 3951 ∩ ciin 4992 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-v 3482 df-ss 3968 df-iin 4994 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |