Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iinssdf | Structured version Visualization version GIF version |
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
iinssdf.a | ⊢ Ⅎ𝑥𝐴 |
iinssdf.n | ⊢ Ⅎ𝑥𝑋 |
iinssdf.c | ⊢ Ⅎ𝑥𝐶 |
iinssdf.d | ⊢ Ⅎ𝑥𝐷 |
iinssdf.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
iinssdf.b | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) |
iinssdf.s | ⊢ (𝜑 → 𝐷 ⊆ 𝐶) |
Ref | Expression |
---|---|
iinssdf | ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinssdf.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
2 | iinssdf.s | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐶) | |
3 | iinssdf.d | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
4 | iinssdf.c | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
5 | 3, 4 | nfss 3909 | . . . 4 ⊢ Ⅎ𝑥 𝐷 ⊆ 𝐶 |
6 | iinssdf.n | . . . 4 ⊢ Ⅎ𝑥𝑋 | |
7 | iinssdf.a | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
8 | iinssdf.b | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐷) | |
9 | 8 | sseq1d 3948 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐵 ⊆ 𝐶 ↔ 𝐷 ⊆ 𝐶)) |
10 | 5, 6, 7, 9 | rspcef 42509 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝐷 ⊆ 𝐶) → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
11 | 1, 2, 10 | syl2anc 583 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
12 | 4 | iinssf 42576 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
13 | 11, 12 | syl 17 | 1 ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ∃wrex 3064 ⊆ wss 3883 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-iin 4924 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |