| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3922 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 3257 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-10 2146 ax-11 2162 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-clel 2808 df-nfc 2882 df-ral 3049 df-ss 3915 |
| This theorem is referenced by: ssrexf 3997 nfpw 4570 ssiun2s 5001 triun 5216 iunopeqop 5466 ssopab2bw 5492 ssopab2b 5494 nffr 5594 nfrel 5726 nffun 6512 nff 6655 fvmptss 6950 ssoprab2b 7424 eqoprab2bw 7425 tfis 7794 ovmptss 8032 nffrecs 8222 oawordeulem 8478 nnawordex 8561 r1val1 9690 cardaleph 9991 nfsum1 15604 nfsum 15605 nfcprod1 15822 nfcprod 15823 iunconn 23363 ovolfiniun 25449 ovoliunlem3 25452 ovoliun 25453 ovoliun2 25454 ovoliunnul 25455 limciun 25842 ssiun2sf 32560 ssrelf 32619 funimass4f 32641 fsumiunle 32838 prodindf 32872 esumiun 34179 bnj1408 35120 totbndbnd 37902 naddwordnexlem4 43558 ss2iundf 43816 iunconnlem2 45091 iinssdf 45299 rnmptssbi 45420 stoweidlem53 46213 stoweidlem57 46217 meaiunincf 46643 meaiuninc3 46645 opnvonmbllem2 46793 smflim 46937 nfsetrecs 49847 setrec2fun 49853 |
| Copyright terms: Public domain | W3C validator |