| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3955 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 3270 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 ∀wral 3052 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2810 df-nfc 2886 df-ral 3053 df-ss 3948 |
| This theorem is referenced by: ssrexf 4030 nfpw 4599 ssiun2s 5029 triun 5249 iunopeqop 5501 ssopab2bw 5527 ssopab2b 5529 nffr 5632 nfrel 5763 nffun 6564 nff 6707 fvmptss 7003 ssoprab2b 7481 eqoprab2bw 7482 tfis 7855 ovmptss 8097 nffrecs 8287 nfwrecsOLD 8321 oawordeulem 8571 nnawordex 8654 r1val1 9805 cardaleph 10108 nfsum1 15711 nfsum 15712 nfcprod1 15929 nfcprod 15930 iunconn 23371 ovolfiniun 25459 ovoliunlem3 25462 ovoliun 25463 ovoliun2 25464 ovoliunnul 25465 limciun 25852 ssiun2sf 32545 ssrelf 32600 funimass4f 32620 fsumiunle 32813 prodindf 32845 esumiun 34130 bnj1408 35072 totbndbnd 37818 naddwordnexlem4 43392 ss2iundf 43650 iunconnlem2 44926 iinssdf 45130 rnmptssbi 45251 stoweidlem53 46049 stoweidlem57 46053 meaiunincf 46479 meaiuninc3 46481 opnvonmbllem2 46629 smflim 46773 nfsetrecs 49517 setrec2fun 49523 |
| Copyright terms: Public domain | W3C validator |