![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss3f 4000 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
4 | nfra1 3290 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-clel 2819 df-nfc 2895 df-ral 3068 df-ss 3993 |
This theorem is referenced by: ssrexf 4075 nfpw 4641 ssiun2s 5071 triun 5298 iunopeqop 5540 ssopab2bw 5566 ssopab2b 5568 nffr 5673 nfrel 5803 nffun 6601 nff 6743 fvmptss 7041 ssoprab2b 7519 eqoprab2bw 7520 tfis 7892 ovmptss 8134 nffrecs 8324 nfwrecsOLD 8358 oawordeulem 8610 nnawordex 8693 r1val1 9855 cardaleph 10158 nfsum1 15738 nfsum 15739 nfcprod1 15956 nfcprod 15957 iunconn 23457 ovolfiniun 25555 ovoliunlem3 25558 ovoliun 25559 ovoliun2 25560 ovoliunnul 25561 limciun 25949 ssiun2sf 32582 ssrelf 32637 funimass4f 32656 fsumiunle 32833 prodindf 33987 esumiun 34058 bnj1408 35012 totbndbnd 37749 naddwordnexlem4 43363 ss2iundf 43621 iunconnlem2 44906 iinssdf 45041 rnmptssbi 45170 stoweidlem53 45974 stoweidlem57 45978 meaiunincf 46404 meaiuninc3 46406 opnvonmbllem2 46554 smflim 46698 nfsetrecs 48778 setrec2fun 48784 |
Copyright terms: Public domain | W3C validator |