![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss3f 3973 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
4 | nfra1 3281 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2883 ∀wral 3061 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-v 3476 df-in 3955 df-ss 3965 |
This theorem is referenced by: ssrexf 4048 nfpw 4621 ssiun2s 5051 triun 5280 iunopeqop 5521 ssopab2bw 5547 ssopab2b 5549 nffr 5650 nfrel 5779 nffun 6571 nff 6713 fvmptss 7010 ssoprab2b 7477 eqoprab2bw 7478 tfis 7843 ovmptss 8078 nffrecs 8267 nfwrecsOLD 8301 oawordeulem 8553 nnawordex 8636 r1val1 9780 cardaleph 10083 nfsum1 15635 nfsum 15636 nfcprod1 15853 nfcprod 15854 iunconn 22931 ovolfiniun 25017 ovoliunlem3 25020 ovoliun 25021 ovoliun2 25022 ovoliunnul 25023 limciun 25410 ssiun2sf 31786 ssrelf 31839 funimass4f 31856 fsumiunle 32030 prodindf 33016 esumiun 33087 bnj1408 34042 totbndbnd 36652 naddwordnexlem4 42142 ss2iundf 42400 iunconnlem2 43686 iinssdf 43818 rnmptssbi 43955 stoweidlem53 44759 stoweidlem57 44763 meaiunincf 45189 meaiuninc3 45191 opnvonmbllem2 45339 smflim 45483 nfsetrecs 47721 setrec2fun 47727 |
Copyright terms: Public domain | W3C validator |