| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3935 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 3259 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-ss 3928 |
| This theorem is referenced by: ssrexf 4010 nfpw 4578 ssiun2s 5007 triun 5224 iunopeqop 5476 ssopab2bw 5502 ssopab2b 5504 nffr 5604 nfrel 5734 nffun 6523 nff 6666 fvmptss 6962 ssoprab2b 7438 eqoprab2bw 7439 tfis 7811 ovmptss 8049 nffrecs 8239 oawordeulem 8495 nnawordex 8578 r1val1 9715 cardaleph 10018 nfsum1 15632 nfsum 15633 nfcprod1 15850 nfcprod 15851 iunconn 23291 ovolfiniun 25378 ovoliunlem3 25381 ovoliun 25382 ovoliun2 25383 ovoliunnul 25384 limciun 25771 ssiun2sf 32461 ssrelf 32516 funimass4f 32534 fsumiunle 32727 prodindf 32759 esumiun 34057 bnj1408 34999 totbndbnd 37756 naddwordnexlem4 43363 ss2iundf 43621 iunconnlem2 44897 iinssdf 45106 rnmptssbi 45227 stoweidlem53 46024 stoweidlem57 46028 meaiunincf 46454 meaiuninc3 46456 opnvonmbllem2 46604 smflim 46748 nfsetrecs 49648 setrec2fun 49654 |
| Copyright terms: Public domain | W3C validator |