| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3929 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 3253 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-ss 3922 |
| This theorem is referenced by: ssrexf 4004 nfpw 4572 ssiun2s 5000 triun 5216 iunopeqop 5468 ssopab2bw 5494 ssopab2b 5496 nffr 5596 nfrel 5727 nffun 6509 nff 6652 fvmptss 6946 ssoprab2b 7422 eqoprab2bw 7423 tfis 7795 ovmptss 8033 nffrecs 8223 oawordeulem 8479 nnawordex 8562 r1val1 9701 cardaleph 10002 nfsum1 15615 nfsum 15616 nfcprod1 15833 nfcprod 15834 iunconn 23331 ovolfiniun 25418 ovoliunlem3 25421 ovoliun 25422 ovoliun2 25423 ovoliunnul 25424 limciun 25811 ssiun2sf 32521 ssrelf 32576 funimass4f 32594 fsumiunle 32787 prodindf 32819 esumiun 34063 bnj1408 35005 totbndbnd 37771 naddwordnexlem4 43377 ss2iundf 43635 iunconnlem2 44911 iinssdf 45120 rnmptssbi 45241 stoweidlem53 46038 stoweidlem57 46042 meaiunincf 46468 meaiuninc3 46470 opnvonmbllem2 46618 smflim 46762 nfsetrecs 49675 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |