| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3926 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 3256 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ∀wral 3047 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-clel 2806 df-nfc 2881 df-ral 3048 df-ss 3919 |
| This theorem is referenced by: ssrexf 4001 nfpw 4569 ssiun2s 4997 triun 5212 iunopeqop 5461 ssopab2bw 5487 ssopab2b 5489 nffr 5589 nfrel 5720 nffun 6504 nff 6647 fvmptss 6941 ssoprab2b 7415 eqoprab2bw 7416 tfis 7785 ovmptss 8023 nffrecs 8213 oawordeulem 8469 nnawordex 8552 r1val1 9679 cardaleph 9980 nfsum1 15597 nfsum 15598 nfcprod1 15815 nfcprod 15816 iunconn 23344 ovolfiniun 25430 ovoliunlem3 25433 ovoliun 25434 ovoliun2 25435 ovoliunnul 25436 limciun 25823 ssiun2sf 32537 ssrelf 32596 funimass4f 32617 fsumiunle 32810 prodindf 32842 esumiun 34105 bnj1408 35046 totbndbnd 37835 naddwordnexlem4 43440 ss2iundf 43698 iunconnlem2 44973 iinssdf 45182 rnmptssbi 45303 stoweidlem53 46097 stoweidlem57 46101 meaiunincf 46527 meaiuninc3 46529 opnvonmbllem2 46677 smflim 46821 nfsetrecs 49724 setrec2fun 49730 |
| Copyright terms: Public domain | W3C validator |