Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss3f 3908 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
4 | nfra1 3142 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ∀wral 3063 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssrexf 3981 nfpw 4551 ssiun2s 4974 triun 5200 iunopeqop 5429 ssopab2bw 5453 ssopab2b 5455 nffr 5554 nfrel 5680 nffun 6441 nff 6580 fvmptss 6869 ssoprab2b 7322 eqoprab2bw 7323 tfis 7676 ovmptss 7904 nffrecs 8070 nfwrecsOLD 8104 oawordeulem 8347 nnawordex 8430 r1val1 9475 cardaleph 9776 nfsum1 15329 nfsum 15330 nfsumOLD 15331 nfcprod1 15548 nfcprod 15549 iunconn 22487 ovolfiniun 24570 ovoliunlem3 24573 ovoliun 24574 ovoliun2 24575 ovoliunnul 24576 limciun 24963 ssiun2sf 30800 ssrelf 30856 funimass4f 30873 fsumiunle 31045 prodindf 31891 esumiun 31962 bnj1408 32916 totbndbnd 35874 ss2iundf 41156 iunconnlem2 42444 iinssdf 42577 rnmptssbi 42696 stoweidlem53 43484 stoweidlem57 43488 meaiunincf 43911 meaiuninc3 43913 opnvonmbllem2 44061 smflim 44199 nfsetrecs 46278 setrec2fun 46284 |
Copyright terms: Public domain | W3C validator |