Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss3f 3912 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
4 | nfra1 3144 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssrexf 3985 nfpw 4554 ssiun2s 4978 triun 5204 iunopeqop 5435 ssopab2bw 5460 ssopab2b 5462 nffr 5563 nfrel 5690 nffun 6457 nff 6596 fvmptss 6887 ssoprab2b 7344 eqoprab2bw 7345 tfis 7701 ovmptss 7933 nffrecs 8099 nfwrecsOLD 8133 oawordeulem 8385 nnawordex 8468 r1val1 9544 cardaleph 9845 nfsum1 15401 nfsum 15402 nfsumOLD 15403 nfcprod1 15620 nfcprod 15621 iunconn 22579 ovolfiniun 24665 ovoliunlem3 24668 ovoliun 24669 ovoliun2 24670 ovoliunnul 24671 limciun 25058 ssiun2sf 30899 ssrelf 30955 funimass4f 30972 fsumiunle 31143 prodindf 31991 esumiun 32062 bnj1408 33016 totbndbnd 35947 ss2iundf 41267 iunconnlem2 42555 iinssdf 42688 rnmptssbi 42807 stoweidlem53 43594 stoweidlem57 43598 meaiunincf 44021 meaiuninc3 44023 opnvonmbllem2 44171 smflim 44312 nfsetrecs 46392 setrec2fun 46398 |
Copyright terms: Public domain | W3C validator |