| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3938 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 3261 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2803 df-nfc 2878 df-ral 3045 df-ss 3931 |
| This theorem is referenced by: ssrexf 4013 nfpw 4582 ssiun2s 5012 triun 5229 iunopeqop 5481 ssopab2bw 5507 ssopab2b 5509 nffr 5611 nfrel 5742 nffun 6539 nff 6684 fvmptss 6980 ssoprab2b 7458 eqoprab2bw 7459 tfis 7831 ovmptss 8072 nffrecs 8262 oawordeulem 8518 nnawordex 8601 r1val1 9739 cardaleph 10042 nfsum1 15656 nfsum 15657 nfcprod1 15874 nfcprod 15875 iunconn 23315 ovolfiniun 25402 ovoliunlem3 25405 ovoliun 25406 ovoliun2 25407 ovoliunnul 25408 limciun 25795 ssiun2sf 32488 ssrelf 32543 funimass4f 32561 fsumiunle 32754 prodindf 32786 esumiun 34084 bnj1408 35026 totbndbnd 37783 naddwordnexlem4 43390 ss2iundf 43648 iunconnlem2 44924 iinssdf 45133 rnmptssbi 45254 stoweidlem53 46051 stoweidlem57 46055 meaiunincf 46481 meaiuninc3 46483 opnvonmbllem2 46631 smflim 46775 nfsetrecs 49675 setrec2fun 49681 |
| Copyright terms: Public domain | W3C validator |