| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfssf.1 | ⊢ Ⅎ𝑥𝐴 |
| dfssf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfssf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfssf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3941 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 3262 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ∀wral 3045 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2804 df-nfc 2879 df-ral 3046 df-ss 3934 |
| This theorem is referenced by: ssrexf 4016 nfpw 4585 ssiun2s 5015 triun 5232 iunopeqop 5484 ssopab2bw 5510 ssopab2b 5512 nffr 5614 nfrel 5745 nffun 6542 nff 6687 fvmptss 6983 ssoprab2b 7461 eqoprab2bw 7462 tfis 7834 ovmptss 8075 nffrecs 8265 oawordeulem 8521 nnawordex 8604 r1val1 9746 cardaleph 10049 nfsum1 15663 nfsum 15664 nfcprod1 15881 nfcprod 15882 iunconn 23322 ovolfiniun 25409 ovoliunlem3 25412 ovoliun 25413 ovoliun2 25414 ovoliunnul 25415 limciun 25802 ssiun2sf 32495 ssrelf 32550 funimass4f 32568 fsumiunle 32761 prodindf 32793 esumiun 34091 bnj1408 35033 totbndbnd 37790 naddwordnexlem4 43397 ss2iundf 43655 iunconnlem2 44931 iinssdf 45140 rnmptssbi 45261 stoweidlem53 46058 stoweidlem57 46062 meaiunincf 46488 meaiuninc3 46490 opnvonmbllem2 46638 smflim 46782 nfsetrecs 49679 setrec2fun 49685 |
| Copyright terms: Public domain | W3C validator |