Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfss | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | dfss3f 3923 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
4 | nfra1 3263 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 ∀wral 3061 ⊆ wss 3898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-v 3443 df-in 3905 df-ss 3915 |
This theorem is referenced by: ssrexf 3996 nfpw 4566 ssiun2s 4995 triun 5224 iunopeqop 5465 ssopab2bw 5491 ssopab2b 5493 nffr 5594 nfrel 5721 nffun 6507 nff 6647 fvmptss 6943 ssoprab2b 7406 eqoprab2bw 7407 tfis 7769 ovmptss 8001 nffrecs 8169 nfwrecsOLD 8203 oawordeulem 8456 nnawordex 8539 r1val1 9643 cardaleph 9946 nfsum1 15500 nfsum 15501 nfsumOLD 15502 nfcprod1 15719 nfcprod 15720 iunconn 22685 ovolfiniun 24771 ovoliunlem3 24774 ovoliun 24775 ovoliun2 24776 ovoliunnul 24777 limciun 25164 ssiun2sf 31186 ssrelf 31242 funimass4f 31259 fsumiunle 31430 prodindf 32289 esumiun 32360 bnj1408 33315 totbndbnd 36060 ss2iundf 41597 iunconnlem2 42885 iinssdf 43018 rnmptssbi 43144 stoweidlem53 43939 stoweidlem57 43943 meaiunincf 44367 meaiuninc3 44369 opnvonmbllem2 44517 smflim 44661 nfsetrecs 46752 setrec2fun 46758 |
Copyright terms: Public domain | W3C validator |