![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgredg | Structured version Visualization version GIF version |
Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgredg | ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | eleq2i 2826 | . . . 4 ⊢ (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ (Edg‘𝐺)) |
3 | edgumgr 28128 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) | |
4 | 2, 3 | sylan2b 595 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) |
5 | hash2prde 14375 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) | |
6 | eleq1 2822 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺))) | |
7 | prex 5390 | . . . . . . . . . . . 12 ⊢ {𝑎, 𝑏} ∈ V | |
8 | 7 | elpw 4565 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
9 | vex 3448 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
10 | vex 3448 | . . . . . . . . . . . . 13 ⊢ 𝑏 ∈ V | |
11 | 9, 10 | prss 4781 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉) |
12 | upgredg.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
13 | 12 | sseq2i 3974 | . . . . . . . . . . . 12 ⊢ ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
14 | 11, 13 | sylbbr 235 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
15 | 8, 14 | sylbi 216 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
16 | 6, 15 | syl6bi 253 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
17 | 16 | adantrd 493 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
18 | 17 | adantl 483 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
19 | 18 | imdistanri 571 | . . . . . 6 ⊢ (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
20 | 19 | ex 414 | . . . . 5 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
21 | 20 | 2eximdv 1923 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
22 | 5, 21 | mpd 15 | . . 3 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
23 | 4, 22 | syl 17 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
24 | r2ex 3189 | . 2 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) | |
25 | 23, 24 | sylibr 233 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2940 ∃wrex 3070 ⊆ wss 3911 𝒫 cpw 4561 {cpr 4589 ‘cfv 6497 2c2 12213 ♯chash 14236 Vtxcvtx 27989 Edgcedg 28040 UMGraphcumgr 28074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-oadd 8417 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-dju 9842 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-n0 12419 df-z 12505 df-uz 12769 df-fz 13431 df-hash 14237 df-edg 28041 df-umgr 28076 |
This theorem is referenced by: usgredg 28189 umgr2cycllem 33791 |
Copyright terms: Public domain | W3C validator |