![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgredg | Structured version Visualization version GIF version |
Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgredg | ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | eleq2i 2819 | . . . 4 ⊢ (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ (Edg‘𝐺)) |
3 | edgumgr 28898 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) | |
4 | 2, 3 | sylan2b 593 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) |
5 | hash2prde 14434 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) | |
6 | eleq1 2815 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺))) | |
7 | prex 5425 | . . . . . . . . . . . 12 ⊢ {𝑎, 𝑏} ∈ V | |
8 | 7 | elpw 4601 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
9 | vex 3472 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
10 | vex 3472 | . . . . . . . . . . . . 13 ⊢ 𝑏 ∈ V | |
11 | 9, 10 | prss 4818 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉) |
12 | upgredg.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
13 | 12 | sseq2i 4006 | . . . . . . . . . . . 12 ⊢ ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
14 | 11, 13 | sylbbr 235 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
15 | 8, 14 | sylbi 216 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
16 | 6, 15 | syl6bi 253 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
17 | 16 | adantrd 491 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
18 | 17 | adantl 481 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
19 | 18 | imdistanri 569 | . . . . . 6 ⊢ (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
20 | 19 | ex 412 | . . . . 5 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
21 | 20 | 2eximdv 1914 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
22 | 5, 21 | mpd 15 | . . 3 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
23 | 4, 22 | syl 17 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
24 | r2ex 3189 | . 2 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) | |
25 | 23, 24 | sylibr 233 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 ∃wrex 3064 ⊆ wss 3943 𝒫 cpw 4597 {cpr 4625 ‘cfv 6536 2c2 12268 ♯chash 14292 Vtxcvtx 28759 Edgcedg 28810 UMGraphcumgr 28844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-hash 14293 df-edg 28811 df-umgr 28846 |
This theorem is referenced by: usgredg 28959 umgr2cycllem 34658 |
Copyright terms: Public domain | W3C validator |