MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredg Structured version   Visualization version   GIF version

Theorem umgredg 29117
Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgredg ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem umgredg
StepHypRef Expression
1 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
21eleq2i 2826 . . . 4 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
3 edgumgr 29114 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
42, 3sylan2b 594 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
5 hash2prde 14488 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}))
6 eleq1 2822 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺)))
7 prex 5407 . . . . . . . . . . . 12 {𝑎, 𝑏} ∈ V
87elpw 4579 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
9 vex 3463 . . . . . . . . . . . . 13 𝑎 ∈ V
10 vex 3463 . . . . . . . . . . . . 13 𝑏 ∈ V
119, 10prss 4796 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉)
12 upgredg.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
1312sseq2i 3988 . . . . . . . . . . . 12 ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
1411, 13sylbbr 236 . . . . . . . . . . 11 ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
158, 14sylbi 217 . . . . . . . . . 10 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
166, 15biimtrdi 253 . . . . . . . . 9 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉)))
1716adantrd 491 . . . . . . . 8 (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1817adantl 481 . . . . . . 7 ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1918imdistanri 569 . . . . . 6 (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2019ex 412 . . . . 5 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
21202eximdv 1919 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
225, 21mpd 15 . . 3 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
234, 22syl 17 . 2 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
24 r2ex 3181 . 2 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2523, 24sylibr 234 1 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  wss 3926  𝒫 cpw 4575  {cpr 4603  cfv 6531  2c2 12295  chash 14348  Vtxcvtx 28975  Edgcedg 29026  UMGraphcumgr 29060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-edg 29027  df-umgr 29062
This theorem is referenced by:  usgredg  29178  umgr2cycllem  35162
  Copyright terms: Public domain W3C validator