MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredg Structured version   Visualization version   GIF version

Theorem umgredg 28901
Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgredg ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem umgredg
StepHypRef Expression
1 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
21eleq2i 2819 . . . 4 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
3 edgumgr 28898 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
42, 3sylan2b 593 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
5 hash2prde 14434 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}))
6 eleq1 2815 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺)))
7 prex 5425 . . . . . . . . . . . 12 {𝑎, 𝑏} ∈ V
87elpw 4601 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
9 vex 3472 . . . . . . . . . . . . 13 𝑎 ∈ V
10 vex 3472 . . . . . . . . . . . . 13 𝑏 ∈ V
119, 10prss 4818 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉)
12 upgredg.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
1312sseq2i 4006 . . . . . . . . . . . 12 ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
1411, 13sylbbr 235 . . . . . . . . . . 11 ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
158, 14sylbi 216 . . . . . . . . . 10 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
166, 15syl6bi 253 . . . . . . . . 9 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉)))
1716adantrd 491 . . . . . . . 8 (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1817adantl 481 . . . . . . 7 ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1918imdistanri 569 . . . . . 6 (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2019ex 412 . . . . 5 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
21202eximdv 1914 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
225, 21mpd 15 . . 3 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
234, 22syl 17 . 2 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
24 r2ex 3189 . 2 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2523, 24sylibr 233 1 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2934  wrex 3064  wss 3943  𝒫 cpw 4597  {cpr 4625  cfv 6536  2c2 12268  chash 14292  Vtxcvtx 28759  Edgcedg 28810  UMGraphcumgr 28844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-oadd 8468  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-hash 14293  df-edg 28811  df-umgr 28846
This theorem is referenced by:  usgredg  28959  umgr2cycllem  34658
  Copyright terms: Public domain W3C validator