MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgredg Structured version   Visualization version   GIF version

Theorem umgredg 28131
Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgredg ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
Distinct variable groups:   𝐶,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐸(𝑎,𝑏)

Proof of Theorem umgredg
StepHypRef Expression
1 upgredg.e . . . . 5 𝐸 = (Edg‘𝐺)
21eleq2i 2826 . . . 4 (𝐶𝐸𝐶 ∈ (Edg‘𝐺))
3 edgumgr 28128 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
42, 3sylan2b 595 . . 3 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2))
5 hash2prde 14375 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}))
6 eleq1 2822 . . . . . . . . . 10 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺)))
7 prex 5390 . . . . . . . . . . . 12 {𝑎, 𝑏} ∈ V
87elpw 4565 . . . . . . . . . . 11 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
9 vex 3448 . . . . . . . . . . . . 13 𝑎 ∈ V
10 vex 3448 . . . . . . . . . . . . 13 𝑏 ∈ V
119, 10prss 4781 . . . . . . . . . . . 12 ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉)
12 upgredg.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
1312sseq2i 3974 . . . . . . . . . . . 12 ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺))
1411, 13sylbbr 235 . . . . . . . . . . 11 ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
158, 14sylbi 216 . . . . . . . . . 10 ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉))
166, 15syl6bi 253 . . . . . . . . 9 (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎𝑉𝑏𝑉)))
1716adantrd 493 . . . . . . . 8 (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1817adantl 483 . . . . . . 7 ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎𝑉𝑏𝑉)))
1918imdistanri 571 . . . . . 6 (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2019ex 414 . . . . 5 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ((𝑎𝑏𝐶 = {𝑎, 𝑏}) → ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
21202eximdv 1923 . . . 4 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (∃𝑎𝑏(𝑎𝑏𝐶 = {𝑎, 𝑏}) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏}))))
225, 21mpd 15 . . 3 ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
234, 22syl 17 . 2 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
24 r2ex 3189 . 2 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝐶 = {𝑎, 𝑏})))
2523, 24sylibr 233 1 ((𝐺 ∈ UMGraph ∧ 𝐶𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝐶 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wex 1782  wcel 2107  wne 2940  wrex 3070  wss 3911  𝒫 cpw 4561  {cpr 4589  cfv 6497  2c2 12213  chash 14236  Vtxcvtx 27989  Edgcedg 28040  UMGraphcumgr 28074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-dju 9842  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-hash 14237  df-edg 28041  df-umgr 28076
This theorem is referenced by:  usgredg  28189  umgr2cycllem  33791
  Copyright terms: Public domain W3C validator