Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgredg | Structured version Visualization version GIF version |
Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgredg | ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | eleq2i 2843 | . . . 4 ⊢ (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ (Edg‘𝐺)) |
3 | edgumgr 27027 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) | |
4 | 2, 3 | sylan2b 596 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) |
5 | hash2prde 13880 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) | |
6 | eleq1 2839 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺))) | |
7 | prex 5301 | . . . . . . . . . . . 12 ⊢ {𝑎, 𝑏} ∈ V | |
8 | 7 | elpw 4498 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
9 | vex 3413 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
10 | vex 3413 | . . . . . . . . . . . . 13 ⊢ 𝑏 ∈ V | |
11 | 9, 10 | prss 4710 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉) |
12 | upgredg.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
13 | 12 | sseq2i 3921 | . . . . . . . . . . . 12 ⊢ ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
14 | 11, 13 | sylbbr 239 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
15 | 8, 14 | sylbi 220 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
16 | 6, 15 | syl6bi 256 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
17 | 16 | adantrd 495 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
18 | 17 | adantl 485 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
19 | 18 | imdistanri 573 | . . . . . 6 ⊢ (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
20 | 19 | ex 416 | . . . . 5 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
21 | 20 | 2eximdv 1920 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
22 | 5, 21 | mpd 15 | . . 3 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
23 | 4, 22 | syl 17 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
24 | r2ex 3227 | . 2 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) | |
25 | 23, 24 | sylibr 237 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 ⊆ wss 3858 𝒫 cpw 4494 {cpr 4524 ‘cfv 6335 2c2 11729 ♯chash 13740 Vtxcvtx 26888 Edgcedg 26939 UMGraphcumgr 26973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-oadd 8116 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-dju 9363 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-hash 13741 df-edg 26940 df-umgr 26975 |
This theorem is referenced by: usgredg 27088 umgr2cycllem 32618 |
Copyright terms: Public domain | W3C validator |