| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgredg | Structured version Visualization version GIF version | ||
| Description: For each edge in a multigraph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| umgredg | ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | 1 | eleq2i 2823 | . . . 4 ⊢ (𝐶 ∈ 𝐸 ↔ 𝐶 ∈ (Edg‘𝐺)) |
| 3 | edgumgr 29114 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ (Edg‘𝐺)) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) | |
| 4 | 2, 3 | sylan2b 594 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2)) |
| 5 | hash2prde 14377 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) | |
| 6 | eleq1 2819 | . . . . . . . . . 10 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺))) | |
| 7 | prex 5375 | . . . . . . . . . . . 12 ⊢ {𝑎, 𝑏} ∈ V | |
| 8 | 7 | elpw 4554 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
| 9 | vex 3440 | . . . . . . . . . . . . 13 ⊢ 𝑎 ∈ V | |
| 10 | vex 3440 | . . . . . . . . . . . . 13 ⊢ 𝑏 ∈ V | |
| 11 | 9, 10 | prss 4772 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ⊆ 𝑉) |
| 12 | upgredg.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 13 | 12 | sseq2i 3964 | . . . . . . . . . . . 12 ⊢ ({𝑎, 𝑏} ⊆ 𝑉 ↔ {𝑎, 𝑏} ⊆ (Vtx‘𝐺)) |
| 14 | 11, 13 | sylbbr 236 | . . . . . . . . . . 11 ⊢ ({𝑎, 𝑏} ⊆ (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
| 15 | 8, 14 | sylbi 217 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
| 16 | 6, 15 | biimtrdi 253 | . . . . . . . . 9 ⊢ (𝐶 = {𝑎, 𝑏} → (𝐶 ∈ 𝒫 (Vtx‘𝐺) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
| 17 | 16 | adantrd 491 | . . . . . . . 8 ⊢ (𝐶 = {𝑎, 𝑏} → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
| 18 | 17 | adantl 481 | . . . . . . 7 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
| 19 | 18 | imdistanri 569 | . . . . . 6 ⊢ (((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
| 20 | 19 | ex 412 | . . . . 5 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ((𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
| 21 | 20 | 2eximdv 1920 | . . . 4 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})))) |
| 22 | 5, 21 | mpd 15 | . . 3 ⊢ ((𝐶 ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘𝐶) = 2) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
| 23 | 4, 22 | syl 17 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) |
| 24 | r2ex 3169 | . 2 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏}))) | |
| 25 | 23, 24 | sylibr 234 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝐶 = {𝑎, 𝑏})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ⊆ wss 3902 𝒫 cpw 4550 {cpr 4578 ‘cfv 6481 2c2 12180 ♯chash 14237 Vtxcvtx 28975 Edgcedg 29026 UMGraphcumgr 29060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-edg 29027 df-umgr 29062 |
| This theorem is referenced by: usgredg 29178 umgr2cycllem 35182 |
| Copyright terms: Public domain | W3C validator |