| Step | Hyp | Ref
| Expression |
| 1 | | df-ioo 13391 |
. . . . . . . . . 10
⊢ (,) =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
| 2 | 1 | ixxf 13397 |
. . . . . . . . 9
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ* |
| 3 | | ffn 6736 |
. . . . . . . . 9
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ* → (,) Fn (ℝ* ×
ℝ*)) |
| 4 | 2, 3 | mp1i 13 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → (,) Fn
(ℝ* × ℝ*)) |
| 5 | | elssuni 4937 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 ⊆ ∪ (𝐽 ×t 𝐽)) |
| 6 | | tpr2rico.0 |
. . . . . . . . . . . . . . . 16
⊢ 𝐽 = (topGen‘ran
(,)) |
| 7 | | retop 24782 |
. . . . . . . . . . . . . . . 16
⊢
(topGen‘ran (,)) ∈ Top |
| 8 | 6, 7 | eqeltri 2837 |
. . . . . . . . . . . . . . 15
⊢ 𝐽 ∈ Top |
| 9 | | uniretop 24783 |
. . . . . . . . . . . . . . . 16
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 10 | 6 | unieqi 4919 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝐽 =
∪ (topGen‘ran (,)) |
| 11 | 9, 10 | eqtr4i 2768 |
. . . . . . . . . . . . . . 15
⊢ ℝ =
∪ 𝐽 |
| 12 | 8, 8, 11, 11 | txunii 23601 |
. . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) = ∪ (𝐽 ×t 𝐽) |
| 13 | 5, 12 | sseqtrrdi 4025 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 ⊆ (ℝ ×
ℝ)) |
| 14 | 13 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐴 ⊆ (ℝ ×
ℝ)) |
| 15 | | simplr 769 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ 𝐴) |
| 16 | 14, 15 | sseldd 3984 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (ℝ ×
ℝ)) |
| 17 | | xp1st 8046 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (ℝ ×
ℝ) → (1st ‘𝑋) ∈ ℝ) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(1st ‘𝑋)
∈ ℝ) |
| 19 | | simpr 484 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈
ℝ+) |
| 20 | 19 | rpred 13077 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈
ℝ) |
| 21 | 20 | rehalfcld 12513 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈
ℝ) |
| 22 | 18, 21 | resubcld 11691 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
− (𝑑 / 2)) ∈
ℝ) |
| 23 | 22 | rexrd 11311 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
− (𝑑 / 2)) ∈
ℝ*) |
| 24 | 18, 21 | readdcld 11290 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
+ (𝑑 / 2)) ∈
ℝ) |
| 25 | 24 | rexrd 11311 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
+ (𝑑 / 2)) ∈
ℝ*) |
| 26 | | fnovrn 7608 |
. . . . . . . 8
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ ((1st
‘𝑋) − (𝑑 / 2)) ∈
ℝ* ∧ ((1st ‘𝑋) + (𝑑 / 2)) ∈ ℝ*) →
(((1st ‘𝑋)
− (𝑑 /
2))(,)((1st ‘𝑋) + (𝑑 / 2))) ∈ ran (,)) |
| 27 | 4, 23, 25, 26 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(((1st ‘𝑋)
− (𝑑 /
2))(,)((1st ‘𝑋) + (𝑑 / 2))) ∈ ran (,)) |
| 28 | | xp2nd 8047 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (ℝ ×
ℝ) → (2nd ‘𝑋) ∈ ℝ) |
| 29 | 16, 28 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(2nd ‘𝑋)
∈ ℝ) |
| 30 | 29, 21 | resubcld 11691 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((2nd ‘𝑋)
− (𝑑 / 2)) ∈
ℝ) |
| 31 | 30 | rexrd 11311 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((2nd ‘𝑋)
− (𝑑 / 2)) ∈
ℝ*) |
| 32 | 29, 21 | readdcld 11290 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((2nd ‘𝑋)
+ (𝑑 / 2)) ∈
ℝ) |
| 33 | 32 | rexrd 11311 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((2nd ‘𝑋)
+ (𝑑 / 2)) ∈
ℝ*) |
| 34 | | fnovrn 7608 |
. . . . . . . 8
⊢ (((,) Fn
(ℝ* × ℝ*) ∧ ((2nd
‘𝑋) − (𝑑 / 2)) ∈
ℝ* ∧ ((2nd ‘𝑋) + (𝑑 / 2)) ∈ ℝ*) →
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ∈ ran (,)) |
| 35 | 4, 31, 33, 34 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ∈ ran (,)) |
| 36 | | eqidd 2738 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) = ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))))) |
| 37 | | xpeq1 5699 |
. . . . . . . . 9
⊢ (𝑥 = (((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) → (𝑥 × 𝑦) = ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × 𝑦)) |
| 38 | 37 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑥 = (((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) →
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦) ↔ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) = ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) × 𝑦))) |
| 39 | | xpeq2 5706 |
. . . . . . . . 9
⊢ (𝑦 = (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2))) →
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × 𝑦) = ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2))))) |
| 40 | 39 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑦 = (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2))) →
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) = ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) × 𝑦) ↔ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) = ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))))) |
| 41 | 38, 40 | rspc2ev 3635 |
. . . . . . 7
⊢
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) ∈ ran (,) ∧
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ∈ ran (,) ∧
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) = ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))))) → ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦)) |
| 42 | 27, 35, 36, 41 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
∃𝑥 ∈ ran
(,)∃𝑦 ∈ ran
(,)((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦)) |
| 43 | | eqid 2737 |
. . . . . . 7
⊢ (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) = (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) |
| 44 | | vex 3484 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 45 | | vex 3484 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 46 | 44, 45 | xpex 7773 |
. . . . . . 7
⊢ (𝑥 × 𝑦) ∈ V |
| 47 | 43, 46 | elrnmpo 7569 |
. . . . . 6
⊢
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦)) |
| 48 | 42, 47 | sylibr 234 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))) |
| 49 | | tpr2rico.2 |
. . . . 5
⊢ 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) |
| 50 | 48, 49 | eleqtrrdi 2852 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ 𝐵) |
| 51 | 50 | ralrimiva 3146 |
. . 3
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∀𝑑 ∈ ℝ+
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ 𝐵) |
| 52 | | xpss 5701 |
. . . . . . 7
⊢ (ℝ
× ℝ) ⊆ (V × V) |
| 53 | 52, 16 | sselid 3981 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (V ×
V)) |
| 54 | 18 | rexrd 11311 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(1st ‘𝑋)
∈ ℝ*) |
| 55 | 19 | rphalfcld 13089 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈
ℝ+) |
| 56 | 18, 55 | ltsubrpd 13109 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
− (𝑑 / 2)) <
(1st ‘𝑋)) |
| 57 | 18, 55 | ltaddrpd 13110 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(1st ‘𝑋)
< ((1st ‘𝑋) + (𝑑 / 2))) |
| 58 | | elioo1 13427 |
. . . . . . . . 9
⊢
((((1st ‘𝑋) − (𝑑 / 2)) ∈ ℝ* ∧
((1st ‘𝑋)
+ (𝑑 / 2)) ∈
ℝ*) → ((1st ‘𝑋) ∈ (((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) ↔ ((1st ‘𝑋) ∈ ℝ*
∧ ((1st ‘𝑋) − (𝑑 / 2)) < (1st ‘𝑋) ∧ (1st
‘𝑋) <
((1st ‘𝑋)
+ (𝑑 /
2))))) |
| 59 | 23, 25, 58 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
∈ (((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) ↔ ((1st ‘𝑋) ∈ ℝ*
∧ ((1st ‘𝑋) − (𝑑 / 2)) < (1st ‘𝑋) ∧ (1st
‘𝑋) <
((1st ‘𝑋)
+ (𝑑 /
2))))) |
| 60 | 54, 56, 57, 59 | mpbir3and 1343 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(1st ‘𝑋)
∈ (((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2)))) |
| 61 | 29 | rexrd 11311 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(2nd ‘𝑋)
∈ ℝ*) |
| 62 | 29, 55 | ltsubrpd 13109 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((2nd ‘𝑋)
− (𝑑 / 2)) <
(2nd ‘𝑋)) |
| 63 | 29, 55 | ltaddrpd 13110 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(2nd ‘𝑋)
< ((2nd ‘𝑋) + (𝑑 / 2))) |
| 64 | | elioo1 13427 |
. . . . . . . . 9
⊢
((((2nd ‘𝑋) − (𝑑 / 2)) ∈ ℝ* ∧
((2nd ‘𝑋)
+ (𝑑 / 2)) ∈
ℝ*) → ((2nd ‘𝑋) ∈ (((2nd ‘𝑋) − (𝑑 / 2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ↔ ((2nd ‘𝑋) ∈ ℝ*
∧ ((2nd ‘𝑋) − (𝑑 / 2)) < (2nd ‘𝑋) ∧ (2nd
‘𝑋) <
((2nd ‘𝑋)
+ (𝑑 /
2))))) |
| 65 | 31, 33, 64 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((2nd ‘𝑋)
∈ (((2nd ‘𝑋) − (𝑑 / 2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ↔ ((2nd ‘𝑋) ∈ ℝ*
∧ ((2nd ‘𝑋) − (𝑑 / 2)) < (2nd ‘𝑋) ∧ (2nd
‘𝑋) <
((2nd ‘𝑋)
+ (𝑑 /
2))))) |
| 66 | 61, 62, 63, 65 | mpbir3and 1343 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(2nd ‘𝑋)
∈ (((2nd ‘𝑋) − (𝑑 / 2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) |
| 67 | 60, 66 | jca 511 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
∈ (((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) ∧ (2nd ‘𝑋) ∈ (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2))))) |
| 68 | | elxp7 8049 |
. . . . . 6
⊢ (𝑋 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) ↔ (𝑋 ∈ (V × V) ∧ ((1st
‘𝑋) ∈
(((1st ‘𝑋)
− (𝑑 /
2))(,)((1st ‘𝑋) + (𝑑 / 2))) ∧ (2nd ‘𝑋) ∈ (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))))) |
| 69 | 53, 67, 68 | sylanbrc 583 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))))) |
| 70 | 69 | ralrimiva 3146 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∀𝑑 ∈ ℝ+ 𝑋 ∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2))))) |
| 71 | | mnfle 13177 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑋) − (𝑑 / 2)) ∈ ℝ* →
-∞ ≤ ((1st ‘𝑋) − (𝑑 / 2))) |
| 72 | 23, 71 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → -∞
≤ ((1st ‘𝑋) − (𝑑 / 2))) |
| 73 | | pnfge 13172 |
. . . . . . . . . . . . . . . . . 18
⊢
(((1st ‘𝑋) + (𝑑 / 2)) ∈ ℝ* →
((1st ‘𝑋)
+ (𝑑 / 2)) ≤
+∞) |
| 74 | 25, 73 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((1st ‘𝑋)
+ (𝑑 / 2)) ≤
+∞) |
| 75 | | mnfxr 11318 |
. . . . . . . . . . . . . . . . . 18
⊢ -∞
∈ ℝ* |
| 76 | | pnfxr 11315 |
. . . . . . . . . . . . . . . . . 18
⊢ +∞
∈ ℝ* |
| 77 | | ioossioo 13481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((-∞ ∈ ℝ* ∧ +∞ ∈
ℝ*) ∧ (-∞ ≤ ((1st ‘𝑋) − (𝑑 / 2)) ∧ ((1st ‘𝑋) + (𝑑 / 2)) ≤ +∞)) →
(((1st ‘𝑋)
− (𝑑 /
2))(,)((1st ‘𝑋) + (𝑑 / 2))) ⊆
(-∞(,)+∞)) |
| 78 | 75, 76, 77 | mpanl12 702 |
. . . . . . . . . . . . . . . . 17
⊢
((-∞ ≤ ((1st ‘𝑋) − (𝑑 / 2)) ∧ ((1st ‘𝑋) + (𝑑 / 2)) ≤ +∞) →
(((1st ‘𝑋)
− (𝑑 /
2))(,)((1st ‘𝑋) + (𝑑 / 2))) ⊆
(-∞(,)+∞)) |
| 79 | 72, 74, 78 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(((1st ‘𝑋)
− (𝑑 /
2))(,)((1st ‘𝑋) + (𝑑 / 2))) ⊆
(-∞(,)+∞)) |
| 80 | | ioomax 13462 |
. . . . . . . . . . . . . . . 16
⊢
(-∞(,)+∞) = ℝ |
| 81 | 79, 80 | sseqtrdi 4024 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(((1st ‘𝑋)
− (𝑑 /
2))(,)((1st ‘𝑋) + (𝑑 / 2))) ⊆ ℝ) |
| 82 | | mnfle 13177 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘𝑋) − (𝑑 / 2)) ∈ ℝ* →
-∞ ≤ ((2nd ‘𝑋) − (𝑑 / 2))) |
| 83 | 31, 82 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → -∞
≤ ((2nd ‘𝑋) − (𝑑 / 2))) |
| 84 | | pnfge 13172 |
. . . . . . . . . . . . . . . . . 18
⊢
(((2nd ‘𝑋) + (𝑑 / 2)) ∈ ℝ* →
((2nd ‘𝑋)
+ (𝑑 / 2)) ≤
+∞) |
| 85 | 33, 84 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((2nd ‘𝑋)
+ (𝑑 / 2)) ≤
+∞) |
| 86 | | ioossioo 13481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((-∞ ∈ ℝ* ∧ +∞ ∈
ℝ*) ∧ (-∞ ≤ ((2nd ‘𝑋) − (𝑑 / 2)) ∧ ((2nd ‘𝑋) + (𝑑 / 2)) ≤ +∞)) →
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ⊆
(-∞(,)+∞)) |
| 87 | 75, 76, 86 | mpanl12 702 |
. . . . . . . . . . . . . . . . 17
⊢
((-∞ ≤ ((2nd ‘𝑋) − (𝑑 / 2)) ∧ ((2nd ‘𝑋) + (𝑑 / 2)) ≤ +∞) →
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ⊆
(-∞(,)+∞)) |
| 88 | 83, 85, 87 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ⊆
(-∞(,)+∞)) |
| 89 | 88, 80 | sseqtrdi 4024 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ⊆ ℝ) |
| 90 | | xpss12 5700 |
. . . . . . . . . . . . . . 15
⊢
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) ⊆ ℝ ∧
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))) ⊆ ℝ) →
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (ℝ
× ℝ)) |
| 91 | 81, 89, 90 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (ℝ
× ℝ)) |
| 92 | 91 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (ℝ ×
ℝ)) |
| 93 | 92 | expcom 413 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑥 ∈ (ℝ ×
ℝ))) |
| 94 | 93 | ancld 550 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)))) |
| 95 | 94 | imdistanri 569 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))))) → ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ 𝑥 ∈
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))))) |
| 96 | 13 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋 ∈ 𝐴 ∧ 𝑑 ∈ ℝ+ ∧ 𝑥 ∈ (ℝ ×
ℝ))) → 𝐴 ⊆
(ℝ × ℝ)) |
| 97 | | simpr1 1195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋 ∈ 𝐴 ∧ 𝑑 ∈ ℝ+ ∧ 𝑥 ∈ (ℝ ×
ℝ))) → 𝑋 ∈
𝐴) |
| 98 | 96, 97 | sseldd 3984 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋 ∈ 𝐴 ∧ 𝑑 ∈ ℝ+ ∧ 𝑥 ∈ (ℝ ×
ℝ))) → 𝑋 ∈
(ℝ × ℝ)) |
| 99 | 98 | 3anassrs 1361 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → 𝑋 ∈
(ℝ × ℝ)) |
| 100 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → 𝑥 ∈
(ℝ × ℝ)) |
| 101 | | simplr 769 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → 𝑑 ∈
ℝ+) |
| 102 | 101 | rphalfcld 13089 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (𝑑 / 2)
∈ ℝ+) |
| 103 | | tpr2rico.1 |
. . . . . . . . . . . . . . 15
⊢ 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) |
| 104 | 103 | cnre2csqima 33910 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ (ℝ ×
ℝ) ∧ 𝑥 ∈
(ℝ × ℝ) ∧ (𝑑 / 2) ∈ ℝ+) →
(𝑥 ∈
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) →
((abs‘(ℜ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2)))) |
| 105 | 99, 100, 102, 104 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (𝑥 ∈
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) →
((abs‘(ℜ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2)))) |
| 106 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 107 | 103, 6, 106 | cnrehmeo 24984 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld)) |
| 108 | 106 | cnfldtopon 24803 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 109 | 108 | toponunii 22922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
| 110 | 12, 109 | hmeof1o 23772 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld))
→ 𝐺:(ℝ ×
ℝ)–1-1-onto→ℂ) |
| 111 | | f1of 6848 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐺:(ℝ ×
ℝ)–1-1-onto→ℂ → 𝐺:(ℝ ×
ℝ)⟶ℂ) |
| 112 | 107, 110,
111 | mp2b 10 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐺:(ℝ ×
ℝ)⟶ℂ |
| 113 | 112 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → 𝐺:(ℝ
× ℝ)⟶ℂ) |
| 114 | 113, 99 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (𝐺‘𝑋) ∈ ℂ) |
| 115 | 112 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐺:(ℝ ×
ℝ)⟶ℂ) |
| 116 | 115 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (𝐺‘𝑥) ∈ ℂ) |
| 117 | | sqsscirc2 33908 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐺‘𝑋) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ) ∧ 𝑑 ∈ ℝ+) →
(((abs‘(ℜ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑)) |
| 118 | 114, 116,
101, 117 | syl21anc 838 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (((abs‘(ℜ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑)) |
| 119 | 118 | imp 406 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ ((abs‘(ℜ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2))) → (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) |
| 120 | 101 | rpxrd 13078 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → 𝑑 ∈
ℝ*) |
| 121 | 120 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → 𝑑 ∈ ℝ*) |
| 122 | | cnxmet 24793 |
. . . . . . . . . . . . . . . . 17
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 123 | 121, 122 | jctil 519 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → ((abs ∘ − ) ∈
(∞Met‘ℂ) ∧ 𝑑 ∈
ℝ*)) |
| 124 | 114 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → (𝐺‘𝑋) ∈ ℂ) |
| 125 | 116 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → (𝐺‘𝑥) ∈ ℂ) |
| 126 | 124, 125 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → ((𝐺‘𝑋) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ)) |
| 127 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . 19
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 128 | 127 | cnmetdval 24791 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘𝑥) ∈ ℂ ∧ (𝐺‘𝑋) ∈ ℂ) → ((𝐺‘𝑥)(abs ∘ − )(𝐺‘𝑋)) = (abs‘((𝐺‘𝑥) − (𝐺‘𝑋)))) |
| 129 | 125, 124,
128 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → ((𝐺‘𝑥)(abs ∘ − )(𝐺‘𝑋)) = (abs‘((𝐺‘𝑥) − (𝐺‘𝑋)))) |
| 130 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) |
| 131 | 129, 130 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → ((𝐺‘𝑥)(abs ∘ − )(𝐺‘𝑋)) < 𝑑) |
| 132 | | elbl3 24402 |
. . . . . . . . . . . . . . . . 17
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺‘𝑋) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ)) → ((𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ↔ ((𝐺‘𝑥)(abs ∘ − )(𝐺‘𝑋)) < 𝑑)) |
| 133 | 132 | biimpar 477 |
. . . . . . . . . . . . . . . 16
⊢ (((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺‘𝑋) ∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ)) ∧ ((𝐺‘𝑥)(abs ∘ − )(𝐺‘𝑋)) < 𝑑) → (𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) |
| 134 | 123, 126,
131, 133 | syl21anc 838 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ (abs‘((𝐺‘𝑥) − (𝐺‘𝑋))) < 𝑑) → (𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) |
| 135 | 119, 134 | syldan 591 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ ((abs‘(ℜ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2))) → (𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) |
| 136 | 135 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (((abs‘(ℜ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺‘𝑥) − (𝐺‘𝑋)))) < (𝑑 / 2)) → (𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑))) |
| 137 | 105, 136 | syld 47 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (𝑥 ∈
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) → (𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑))) |
| 138 | | f1ocnv 6860 |
. . . . . . . . . . . . . . 15
⊢ (𝐺:(ℝ ×
ℝ)–1-1-onto→ℂ → ◡𝐺:ℂ–1-1-onto→(ℝ × ℝ)) |
| 139 | 107, 110,
138 | mp2b 10 |
. . . . . . . . . . . . . 14
⊢ ◡𝐺:ℂ–1-1-onto→(ℝ × ℝ) |
| 140 | | f1ofun 6850 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺:ℂ–1-1-onto→(ℝ × ℝ) → Fun ◡𝐺) |
| 141 | 139, 140 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ Fun ◡𝐺 |
| 142 | | f1odm 6852 |
. . . . . . . . . . . . . . 15
⊢ (◡𝐺:ℂ–1-1-onto→(ℝ × ℝ) → dom ◡𝐺 = ℂ) |
| 143 | 139, 142 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ dom ◡𝐺 = ℂ |
| 144 | 116, 143 | eleqtrrdi 2852 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (𝐺‘𝑥) ∈ dom ◡𝐺) |
| 145 | | funfvima 7250 |
. . . . . . . . . . . . 13
⊢ ((Fun
◡𝐺 ∧ (𝐺‘𝑥) ∈ dom ◡𝐺) → ((𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) → (◡𝐺‘(𝐺‘𝑥)) ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)))) |
| 146 | 141, 144,
145 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → ((𝐺‘𝑥) ∈ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) → (◡𝐺‘(𝐺‘𝑥)) ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)))) |
| 147 | 107, 110 | mp1i 13 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → 𝐺:(ℝ
× ℝ)–1-1-onto→ℂ) |
| 148 | | f1ocnvfv1 7296 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:(ℝ ×
ℝ)–1-1-onto→ℂ ∧ 𝑥 ∈ (ℝ × ℝ)) →
(◡𝐺‘(𝐺‘𝑥)) = 𝑥) |
| 149 | 147, 100,
148 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (◡𝐺‘(𝐺‘𝑥)) = 𝑥) |
| 150 | 149 | eleq1d 2826 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → ((◡𝐺‘(𝐺‘𝑥)) ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ↔ 𝑥 ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)))) |
| 151 | 150 | biimpd 229 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → ((◡𝐺‘(𝐺‘𝑥)) ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) → 𝑥 ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)))) |
| 152 | 137, 146,
151 | 3syld 60 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) → (𝑥 ∈
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)))) |
| 153 | 152 | imp 406 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ ×
ℝ)) ∧ 𝑥 ∈
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑))) |
| 154 | 95, 153 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑))) |
| 155 | 154 | ex 412 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑥 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)))) |
| 156 | 155 | ssrdv 3989 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) ∧ 𝑑 ∈ ℝ+) →
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑))) |
| 157 | 156 | ralrimiva 3146 |
. . . . . 6
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∀𝑑 ∈ ℝ+
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑))) |
| 158 | 103 | mpofun 7557 |
. . . . . . . . . 10
⊢ Fun 𝐺 |
| 159 | 158 | a1i 11 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → Fun 𝐺) |
| 160 | 13 | sselda 3983 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (ℝ ×
ℝ)) |
| 161 | | f1odm 6852 |
. . . . . . . . . . 11
⊢ (𝐺:(ℝ ×
ℝ)–1-1-onto→ℂ → dom 𝐺 = (ℝ ×
ℝ)) |
| 162 | 107, 110,
161 | mp2b 10 |
. . . . . . . . . 10
⊢ dom 𝐺 = (ℝ ×
ℝ) |
| 163 | 160, 162 | eleqtrrdi 2852 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ dom 𝐺) |
| 164 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) |
| 165 | | funfvima 7250 |
. . . . . . . . . 10
⊢ ((Fun
𝐺 ∧ 𝑋 ∈ dom 𝐺) → (𝑋 ∈ 𝐴 → (𝐺‘𝑋) ∈ (𝐺 “ 𝐴))) |
| 166 | 165 | imp 406 |
. . . . . . . . 9
⊢ (((Fun
𝐺 ∧ 𝑋 ∈ dom 𝐺) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ (𝐺 “ 𝐴)) |
| 167 | 159, 163,
164, 166 | syl21anc 838 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ (𝐺 “ 𝐴)) |
| 168 | | hmeoima 23773 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld))
∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → (𝐺 “ 𝐴) ∈
(TopOpen‘ℂfld)) |
| 169 | 107, 168 | mpan 690 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → (𝐺 “ 𝐴) ∈
(TopOpen‘ℂfld)) |
| 170 | 106 | cnfldtopn 24802 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
| 171 | 170 | elmopn2 24455 |
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ∈ (∞Met‘ℂ) → ((𝐺 “ 𝐴) ∈
(TopOpen‘ℂfld) ↔ ((𝐺 “ 𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺 “ 𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ −
))𝑑) ⊆ (𝐺 “ 𝐴)))) |
| 172 | 122, 171 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝐺 “ 𝐴) ∈
(TopOpen‘ℂfld) ↔ ((𝐺 “ 𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺 “ 𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ −
))𝑑) ⊆ (𝐺 “ 𝐴))) |
| 173 | 172 | simprbi 496 |
. . . . . . . . . 10
⊢ ((𝐺 “ 𝐴) ∈
(TopOpen‘ℂfld) → ∀𝑚 ∈ (𝐺 “ 𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ −
))𝑑) ⊆ (𝐺 “ 𝐴)) |
| 174 | 169, 173 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ∀𝑚 ∈ (𝐺 “ 𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ −
))𝑑) ⊆ (𝐺 “ 𝐴)) |
| 175 | 174 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∀𝑚 ∈ (𝐺 “ 𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ −
))𝑑) ⊆ (𝐺 “ 𝐴)) |
| 176 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝐺‘𝑋) → (𝑚(ball‘(abs ∘ − ))𝑑) = ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) |
| 177 | 176 | sseq1d 4015 |
. . . . . . . . . 10
⊢ (𝑚 = (𝐺‘𝑋) → ((𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴) ↔ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴))) |
| 178 | 177 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑚 = (𝐺‘𝑋) → (∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ −
))𝑑) ⊆ (𝐺 “ 𝐴) ↔ ∃𝑑 ∈ ℝ+ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴))) |
| 179 | 178 | rspcva 3620 |
. . . . . . . 8
⊢ (((𝐺‘𝑋) ∈ (𝐺 “ 𝐴) ∧ ∀𝑚 ∈ (𝐺 “ 𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ −
))𝑑) ⊆ (𝐺 “ 𝐴)) → ∃𝑑 ∈ ℝ+ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴)) |
| 180 | 167, 175,
179 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑑 ∈ ℝ+ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴)) |
| 181 | | imass2 6120 |
. . . . . . . . . 10
⊢ (((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴) → (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (◡𝐺 “ (𝐺 “ 𝐴))) |
| 182 | | f1of1 6847 |
. . . . . . . . . . . . 13
⊢ (𝐺:(ℝ ×
ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–1-1→ℂ) |
| 183 | 107, 110,
182 | mp2b 10 |
. . . . . . . . . . . 12
⊢ 𝐺:(ℝ ×
ℝ)–1-1→ℂ |
| 184 | | f1imacnv 6864 |
. . . . . . . . . . . 12
⊢ ((𝐺:(ℝ ×
ℝ)–1-1→ℂ ∧
𝐴 ⊆ (ℝ ×
ℝ)) → (◡𝐺 “ (𝐺 “ 𝐴)) = 𝐴) |
| 185 | 183, 13, 184 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → (◡𝐺 “ (𝐺 “ 𝐴)) = 𝐴) |
| 186 | 185 | sseq2d 4016 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → ((◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (◡𝐺 “ (𝐺 “ 𝐴)) ↔ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)) |
| 187 | 181, 186 | imbitrid 244 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → (((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴) → (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)) |
| 188 | 187 | reximdv 3170 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐽 ×t 𝐽) → (∃𝑑 ∈ ℝ+ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴) → ∃𝑑 ∈ ℝ+ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)) |
| 189 | 188 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → (∃𝑑 ∈ ℝ+ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺 “ 𝐴) → ∃𝑑 ∈ ℝ+ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)) |
| 190 | 180, 189 | mpd 15 |
. . . . . 6
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑑 ∈ ℝ+ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) |
| 191 | | r19.29 3114 |
. . . . . 6
⊢
((∀𝑑 ∈
ℝ+ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ ∃𝑑 ∈ ℝ+
(◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)) |
| 192 | 157, 190,
191 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑑 ∈ ℝ+
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)) |
| 193 | | sstr 3992 |
. . . . . 6
⊢
((((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴) |
| 194 | 193 | reximi 3084 |
. . . . 5
⊢
(∃𝑑 ∈
ℝ+ (((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (◡𝐺 “ ((𝐺‘𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴) |
| 195 | 192, 194 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑑 ∈ ℝ+
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴) |
| 196 | | r19.29 3114 |
. . . 4
⊢
((∀𝑑 ∈
ℝ+ 𝑋
∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∧ ∃𝑑 ∈ ℝ+
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+
(𝑋 ∈
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∧
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) |
| 197 | 70, 195, 196 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) ∧ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) |
| 198 | | r19.29 3114 |
. . 3
⊢
((∀𝑑 ∈
ℝ+ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) ∧ ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑑 ∈ ℝ+
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∧
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴))) |
| 199 | 51, 197, 198 | syl2anc 584 |
. 2
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑑 ∈ ℝ+
(((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∧
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴))) |
| 200 | | eleq2 2830 |
. . . . 5
⊢ (𝑟 = ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) → (𝑋 ∈ 𝑟 ↔ 𝑋 ∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))))) |
| 201 | | sseq1 4009 |
. . . . 5
⊢ (𝑟 = ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) → (𝑟 ⊆ 𝐴 ↔ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) |
| 202 | 200, 201 | anbi12d 632 |
. . . 4
⊢ (𝑟 = ((((1st
‘𝑋) − (𝑑 / 2))(,)((1st
‘𝑋) + (𝑑 / 2))) ×
(((2nd ‘𝑋)
− (𝑑 /
2))(,)((2nd ‘𝑋) + (𝑑 / 2)))) → ((𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴) ↔ (𝑋 ∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∧
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴))) |
| 203 | 202 | rspcev 3622 |
. . 3
⊢
((((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∧
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟 ∈ 𝐵 (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) |
| 204 | 203 | rexlimivw 3151 |
. 2
⊢
(∃𝑑 ∈
ℝ+ (((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ∧
((((1st ‘𝑋) − (𝑑 / 2))(,)((1st ‘𝑋) + (𝑑 / 2))) × (((2nd
‘𝑋) − (𝑑 / 2))(,)((2nd
‘𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟 ∈ 𝐵 (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) |
| 205 | 199, 204 | syl 17 |
1
⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑟 ∈ 𝐵 (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) |