Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2rico Structured version   Visualization version   GIF version

Theorem tpr2rico 31437
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the (𝑙↑+∞) norm 𝑋. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
tpr2rico.0 𝐽 = (topGen‘ran (,))
tpr2rico.1 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣)))
tpr2rico.2 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
tpr2rico ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦   𝑥,𝑟,𝐴   𝐵,𝑟   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝑦,𝑟,𝑋
Allowed substitution hints:   𝐴(𝑦,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑣,𝑢)   𝐺(𝑦,𝑣,𝑢,𝑟)   𝐽(𝑦,𝑣,𝑢,𝑟)   𝑋(𝑣,𝑢)

Proof of Theorem tpr2rico
Dummy variables 𝑧 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12828 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21ixxf 12834 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶𝒫 ℝ*
3 ffn 6505 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ* → (,) Fn (ℝ* × ℝ*))
42, 3mp1i 13 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (,) Fn (ℝ* × ℝ*))
5 elssuni 4829 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 (𝐽 ×t 𝐽))
6 tpr2rico.0 . . . . . . . . . . . . . . . 16 𝐽 = (topGen‘ran (,))
7 retop 23517 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) ∈ Top
86, 7eqeltri 2830 . . . . . . . . . . . . . . 15 𝐽 ∈ Top
9 uniretop 23518 . . . . . . . . . . . . . . . 16 ℝ = (topGen‘ran (,))
106unieqi 4810 . . . . . . . . . . . . . . . 16 𝐽 = (topGen‘ran (,))
119, 10eqtr4i 2765 . . . . . . . . . . . . . . 15 ℝ = 𝐽
128, 8, 11, 11txunii 22347 . . . . . . . . . . . . . 14 (ℝ × ℝ) = (𝐽 ×t 𝐽)
135, 12sseqtrrdi 3929 . . . . . . . . . . . . 13 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 ⊆ (ℝ × ℝ))
1413ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐴 ⊆ (ℝ × ℝ))
15 simplr 769 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋𝐴)
1614, 15sseldd 3879 . . . . . . . . . . 11 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
17 xp1st 7749 . . . . . . . . . . 11 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ ℝ)
19 simpr 488 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 12517 . . . . . . . . . . 11 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120rehalfcld 11966 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈ ℝ)
2218, 21resubcld 11149 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) ∈ ℝ)
2322rexrd 10772 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) ∈ ℝ*)
2418, 21readdcld 10751 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ∈ ℝ)
2524rexrd 10772 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*)
26 fnovrn 7342 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ((1st𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,))
274, 23, 25, 26syl3anc 1372 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,))
28 xp2nd 7750 . . . . . . . . . . 11 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
2916, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ ℝ)
3029, 21resubcld 11149 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ)
3130rexrd 10772 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ*)
3229, 21readdcld 10751 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ)
3332rexrd 10772 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*)
34 fnovrn 7342 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,))
354, 31, 33, 34syl3anc 1372 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,))
36 eqidd 2740 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
37 xpeq1 5540 . . . . . . . . 9 (𝑥 = (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) → (𝑥 × 𝑦) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦))
3837eqeq2d 2750 . . . . . . . 8 (𝑥 = (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) → (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦) ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦)))
39 xpeq2 5547 . . . . . . . . 9 (𝑦 = (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
4039eqeq2d 2750 . . . . . . . 8 (𝑦 = (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) → (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦) ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
4138, 40rspc2ev 3539 . . . . . . 7 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,) ∧ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
4227, 35, 36, 41syl3anc 1372 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
43 eqid 2739 . . . . . . 7 (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) = (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
44 vex 3403 . . . . . . . 8 𝑥 ∈ V
45 vex 3403 . . . . . . . 8 𝑦 ∈ V
4644, 45xpex 7497 . . . . . . 7 (𝑥 × 𝑦) ∈ V
4743, 46elrnmpo 7305 . . . . . 6 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
4842, 47sylibr 237 . . . . 5 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)))
49 tpr2rico.2 . . . . 5 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
5048, 49eleqtrrdi 2845 . . . 4 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵)
5150ralrimiva 3097 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵)
52 xpss 5542 . . . . . . 7 (ℝ × ℝ) ⊆ (V × V)
5352, 16sseldi 3876 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (V × V))
5418rexrd 10772 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ ℝ*)
5519rphalfcld 12529 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈ ℝ+)
5618, 55ltsubrpd 12549 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) < (1st𝑋))
5718, 55ltaddrpd 12550 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))
58 elioo1 12864 . . . . . . . . 9 ((((1st𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ↔ ((1st𝑋) ∈ ℝ* ∧ ((1st𝑋) − (𝑑 / 2)) < (1st𝑋) ∧ (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))))
5923, 25, 58syl2anc 587 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ↔ ((1st𝑋) ∈ ℝ* ∧ ((1st𝑋) − (𝑑 / 2)) < (1st𝑋) ∧ (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))))
6054, 56, 57, 59mpbir3and 1343 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))))
6129rexrd 10772 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ ℝ*)
6229, 55ltsubrpd 12549 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋))
6329, 55ltaddrpd 12550 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))
64 elioo1 12864 . . . . . . . . 9 ((((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*) → ((2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ↔ ((2nd𝑋) ∈ ℝ* ∧ ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋) ∧ (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))))
6531, 33, 64syl2anc 587 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ↔ ((2nd𝑋) ∈ ℝ* ∧ ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋) ∧ (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))))
6661, 62, 63, 65mpbir3and 1343 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))
6760, 66jca 515 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∧ (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
68 elxp7 7752 . . . . . 6 (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∧ (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
6953, 67, 68sylanbrc 586 . . . . 5 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
7069ralrimiva 3097 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
71 mnfle 12615 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) − (𝑑 / 2)) ∈ ℝ* → -∞ ≤ ((1st𝑋) − (𝑑 / 2)))
7223, 71syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → -∞ ≤ ((1st𝑋) − (𝑑 / 2)))
73 pnfge 12611 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) + (𝑑 / 2)) ∈ ℝ* → ((1st𝑋) + (𝑑 / 2)) ≤ +∞)
7425, 73syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ≤ +∞)
75 mnfxr 10779 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
76 pnfxr 10776 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
77 ioossioo 12918 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ ((1st𝑋) − (𝑑 / 2)) ∧ ((1st𝑋) + (𝑑 / 2)) ≤ +∞)) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
7875, 76, 77mpanl12 702 . . . . . . . . . . . . . . . . 17 ((-∞ ≤ ((1st𝑋) − (𝑑 / 2)) ∧ ((1st𝑋) + (𝑑 / 2)) ≤ +∞) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
7972, 74, 78syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
80 ioomax 12899 . . . . . . . . . . . . . . . 16 (-∞(,)+∞) = ℝ
8179, 80sseqtrdi 3928 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ ℝ)
82 mnfle 12615 . . . . . . . . . . . . . . . . . 18 (((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* → -∞ ≤ ((2nd𝑋) − (𝑑 / 2)))
8331, 82syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → -∞ ≤ ((2nd𝑋) − (𝑑 / 2)))
84 pnfge 12611 . . . . . . . . . . . . . . . . . 18 (((2nd𝑋) + (𝑑 / 2)) ∈ ℝ* → ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)
8533, 84syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)
86 ioossioo 12918 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ ((2nd𝑋) − (𝑑 / 2)) ∧ ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8775, 76, 86mpanl12 702 . . . . . . . . . . . . . . . . 17 ((-∞ ≤ ((2nd𝑋) − (𝑑 / 2)) ∧ ((2nd𝑋) + (𝑑 / 2)) ≤ +∞) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8883, 85, 87syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8988, 80sseqtrdi 3928 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ ℝ)
90 xpss12 5541 . . . . . . . . . . . . . . 15 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ ℝ ∧ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ ℝ) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (ℝ × ℝ))
9181, 89, 90syl2anc 587 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (ℝ × ℝ))
9291sselda 3878 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (ℝ × ℝ))
9392expcom 417 . . . . . . . . . . . 12 (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑥 ∈ (ℝ × ℝ)))
9493ancld 554 . . . . . . . . . . 11 (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ))))
9594imdistanri 573 . . . . . . . . . 10 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
9613adantr 484 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝐴 ⊆ (ℝ × ℝ))
97 simpr1 1195 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝑋𝐴)
9896, 97sseldd 3879 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝑋 ∈ (ℝ × ℝ))
99983anassrs 1361 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑋 ∈ (ℝ × ℝ))
100 simpr 488 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑥 ∈ (ℝ × ℝ))
101 simplr 769 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑑 ∈ ℝ+)
102101rphalfcld 12529 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑑 / 2) ∈ ℝ+)
103 tpr2rico.1 . . . . . . . . . . . . . . 15 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣)))
104103cnre2csqima 31436 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑥 ∈ (ℝ × ℝ) ∧ (𝑑 / 2) ∈ ℝ+) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))))
10599, 100, 102, 104syl3anc 1372 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))))
106 eqid 2739 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
107103, 6, 106cnrehmeo 23708 . . . . . . . . . . . . . . . . . . . 20 𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld))
108106cnfldtopon 23538 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
109108toponunii 21670 . . . . . . . . . . . . . . . . . . . . 21 ℂ = (TopOpen‘ℂfld)
11012, 109hmeof1o 22518 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld)) → 𝐺:(ℝ × ℝ)–1-1-onto→ℂ)
111 f1of 6621 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)⟶ℂ)
112107, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19 𝐺:(ℝ × ℝ)⟶ℂ
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝐺:(ℝ × ℝ)⟶ℂ)
114113, 99ffvelrnd 6865 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑋) ∈ ℂ)
115112a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐺:(ℝ × ℝ)⟶ℂ)
116115ffvelrnda 6864 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑥) ∈ ℂ)
117 sqsscirc2 31434 . . . . . . . . . . . . . . . . 17 ((((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) ∧ 𝑑 ∈ ℝ+) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑))
118114, 116, 101, 117syl21anc 837 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑))
119118imp 410 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑)
120101rpxrd 12518 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑑 ∈ ℝ*)
121120adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → 𝑑 ∈ ℝ*)
122 cnxmet 23528 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (∞Met‘ℂ)
123121, 122jctil 523 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*))
124114adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑋) ∈ ℂ)
125116adantr 484 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑥) ∈ ℂ)
126124, 125jca 515 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ))
127 eqid 2739 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ) = (abs ∘ − )
128127cnmetdval 23526 . . . . . . . . . . . . . . . . . 18 (((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑋) ∈ ℂ) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) = (abs‘((𝐺𝑥) − (𝐺𝑋))))
129125, 124, 128syl2anc 587 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) = (abs‘((𝐺𝑥) − (𝐺𝑋))))
130 simpr 488 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑)
131129, 130eqbrtrd 5053 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑)
132 elbl3 23148 . . . . . . . . . . . . . . . . 17 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ)) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ↔ ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑))
133132biimpar 481 . . . . . . . . . . . . . . . 16 (((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ)) ∧ ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
134123, 126, 131, 133syl21anc 837 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
135119, 134syldan 594 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
136135ex 416 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
137105, 136syld 47 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
138 f1ocnv 6633 . . . . . . . . . . . . . . 15 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:ℂ–1-1-onto→(ℝ × ℝ))
139107, 110, 138mp2b 10 . . . . . . . . . . . . . 14 𝐺:ℂ–1-1-onto→(ℝ × ℝ)
140 f1ofun 6623 . . . . . . . . . . . . . 14 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → Fun 𝐺)
141139, 140ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐺
142 f1odm 6625 . . . . . . . . . . . . . . 15 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → dom 𝐺 = ℂ)
143139, 142ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐺 = ℂ
144116, 143eleqtrrdi 2845 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑥) ∈ dom 𝐺)
145 funfvima 7006 . . . . . . . . . . . . 13 ((Fun 𝐺 ∧ (𝐺𝑥) ∈ dom 𝐺) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) → (𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
146141, 144, 145sylancr 590 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) → (𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
147107, 110mp1i 13 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝐺:(ℝ × ℝ)–1-1-onto→ℂ)
148 f1ocnvfv1 7047 . . . . . . . . . . . . . . 15 ((𝐺:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺‘(𝐺𝑥)) = 𝑥)
149147, 100, 148syl2anc 587 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺‘(𝐺𝑥)) = 𝑥)
150149eleq1d 2818 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ↔ 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
151150biimpd 232 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
152137, 146, 1513syld 60 . . . . . . . . . . 11 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
153152imp 410 . . . . . . . . . 10 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
15495, 153syl 17 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
155154ex 416 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
156155ssrdv 3884 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
157156ralrimiva 3097 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
158103mpofun 7293 . . . . . . . . . 10 Fun 𝐺
159158a1i 11 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → Fun 𝐺)
16013sselda 3878 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
161 f1odm 6625 . . . . . . . . . . 11 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → dom 𝐺 = (ℝ × ℝ))
162107, 110, 161mp2b 10 . . . . . . . . . 10 dom 𝐺 = (ℝ × ℝ)
163160, 162eleqtrrdi 2845 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐺)
164 simpr 488 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋𝐴)
165 funfvima 7006 . . . . . . . . . 10 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋𝐴 → (𝐺𝑋) ∈ (𝐺𝐴)))
166165imp 410 . . . . . . . . 9 (((Fun 𝐺𝑋 ∈ dom 𝐺) ∧ 𝑋𝐴) → (𝐺𝑋) ∈ (𝐺𝐴))
167159, 163, 164, 166syl21anc 837 . . . . . . . 8 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → (𝐺𝑋) ∈ (𝐺𝐴))
168 hmeoima 22519 . . . . . . . . . . 11 ((𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld)) ∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → (𝐺𝐴) ∈ (TopOpen‘ℂfld))
169107, 168mpan 690 . . . . . . . . . 10 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝐺𝐴) ∈ (TopOpen‘ℂfld))
170106cnfldtopn 23537 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
171170elmopn2 23201 . . . . . . . . . . . 12 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((𝐺𝐴) ∈ (TopOpen‘ℂfld) ↔ ((𝐺𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))))
172122, 171ax-mp 5 . . . . . . . . . . 11 ((𝐺𝐴) ∈ (TopOpen‘ℂfld) ↔ ((𝐺𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
173172simprbi 500 . . . . . . . . . 10 ((𝐺𝐴) ∈ (TopOpen‘ℂfld) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
174169, 173syl 17 . . . . . . . . 9 (𝐴 ∈ (𝐽 ×t 𝐽) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
175174adantr 484 . . . . . . . 8 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
176 oveq1 7180 . . . . . . . . . . 11 (𝑚 = (𝐺𝑋) → (𝑚(ball‘(abs ∘ − ))𝑑) = ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
177176sseq1d 3909 . . . . . . . . . 10 (𝑚 = (𝐺𝑋) → ((𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) ↔ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
178177rexbidv 3208 . . . . . . . . 9 (𝑚 = (𝐺𝑋) → (∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) ↔ ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
179178rspcva 3525 . . . . . . . 8 (((𝐺𝑋) ∈ (𝐺𝐴) ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)) → ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
180167, 175, 179syl2anc 587 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
181 imass2 5940 . . . . . . . . . 10 (((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (𝐺 “ (𝐺𝐴)))
182 f1of1 6620 . . . . . . . . . . . . 13 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–1-1→ℂ)
183107, 110, 182mp2b 10 . . . . . . . . . . . 12 𝐺:(ℝ × ℝ)–1-1→ℂ
184 f1imacnv 6637 . . . . . . . . . . . 12 ((𝐺:(ℝ × ℝ)–1-1→ℂ ∧ 𝐴 ⊆ (ℝ × ℝ)) → (𝐺 “ (𝐺𝐴)) = 𝐴)
185183, 13, 184sylancr 590 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝐺 “ (𝐺𝐴)) = 𝐴)
186185sseq2d 3910 . . . . . . . . . 10 (𝐴 ∈ (𝐽 ×t 𝐽) → ((𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (𝐺 “ (𝐺𝐴)) ↔ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
187181, 186syl5ib 247 . . . . . . . . 9 (𝐴 ∈ (𝐽 ×t 𝐽) → (((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
188187reximdv 3184 . . . . . . . 8 (𝐴 ∈ (𝐽 ×t 𝐽) → (∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
189188adantr 484 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → (∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
190180, 189mpd 15 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)
191 r19.29 3168 . . . . . 6 ((∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
192157, 190, 191syl2anc 587 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
193 sstr 3886 . . . . . 6 ((((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
194193reximi 3158 . . . . 5 (∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
195192, 194syl 17 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
196 r19.29 3168 . . . 4 ((∀𝑑 ∈ ℝ+ 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
19770, 195, 196syl2anc 587 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
198 r19.29 3168 . . 3 ((∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
19951, 197, 198syl2anc 587 . 2 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
200 eleq2 2822 . . . . 5 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝑋𝑟𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
201 sseq1 3903 . . . . 5 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝑟𝐴 ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
202200, 201anbi12d 634 . . . 4 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((𝑋𝑟𝑟𝐴) ↔ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
203202rspcev 3527 . . 3 ((((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
204203rexlimivw 3193 . 2 (∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
205199, 204syl 17 1 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  wrex 3055  Vcvv 3399  wss 3844  𝒫 cpw 4489   cuni 4797   class class class wbr 5031   × cxp 5524  ccnv 5525  dom cdm 5526  ran crn 5527  cima 5529  ccom 5530  Fun wfun 6334   Fn wfn 6335  wf 6336  1-1wf1 6337  1-1-ontowf1o 6339  cfv 6340  (class class class)co 7173  cmpo 7175  1st c1st 7715  2nd c2nd 7716  cc 10616  cr 10617  ici 10620   + caddc 10621   · cmul 10623  +∞cpnf 10753  -∞cmnf 10754  *cxr 10755   < clt 10756  cle 10757  cmin 10951   / cdiv 11378  2c2 11774  +crp 12475  (,)cioo 12824  cre 14549  cim 14550  abscabs 14686  TopOpenctopn 16801  topGenctg 16817  ∞Metcxmet 20205  ballcbl 20207  fldccnfld 20220  Topctop 21647   ×t ctx 22314  Homeochmeo 22507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-supp 7860  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-ixp 8511  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fsupp 8910  df-fi 8951  df-sup 8982  df-inf 8983  df-oi 9050  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-z 12066  df-dec 12183  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-icc 12831  df-fz 12985  df-fzo 13128  df-seq 13464  df-exp 13525  df-hash 13786  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-sca 16687  df-vsca 16688  df-ip 16689  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-hom 16695  df-cco 16696  df-rest 16802  df-topn 16803  df-0g 16821  df-gsum 16822  df-topgen 16823  df-pt 16824  df-prds 16827  df-xrs 16881  df-qtop 16886  df-imas 16887  df-xps 16889  df-mre 16963  df-mrc 16964  df-acs 16966  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-submnd 18076  df-mulg 18346  df-cntz 18568  df-cmn 19029  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-cnfld 20221  df-top 21648  df-topon 21665  df-topsp 21687  df-bases 21700  df-cn 21981  df-cnp 21982  df-tx 22316  df-hmeo 22509  df-xms 23076  df-ms 23077  df-tms 23078  df-cncf 23633
This theorem is referenced by:  dya2iocnei  31822
  Copyright terms: Public domain W3C validator