Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpr2rico Structured version   Visualization version   GIF version

Theorem tpr2rico 31148
Description: For any point of an open set of the usual topology on (ℝ × ℝ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the (𝑙↑+∞) norm 𝑋. (Contributed by Thierry Arnoux, 21-Sep-2017.)
Hypotheses
Ref Expression
tpr2rico.0 𝐽 = (topGen‘ran (,))
tpr2rico.1 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣)))
tpr2rico.2 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
tpr2rico ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦   𝑥,𝑟,𝐴   𝐵,𝑟   𝑥,𝐺   𝑥,𝐽   𝑥,𝑋   𝑦,𝑟,𝑋
Allowed substitution hints:   𝐴(𝑦,𝑣,𝑢)   𝐵(𝑥,𝑦,𝑣,𝑢)   𝐺(𝑦,𝑣,𝑢,𝑟)   𝐽(𝑦,𝑣,𝑢,𝑟)   𝑋(𝑣,𝑢)

Proof of Theorem tpr2rico
Dummy variables 𝑧 𝑚 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioo 12734 . . . . . . . . . 10 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
21ixxf 12740 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶𝒫 ℝ*
3 ffn 6507 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ* → (,) Fn (ℝ* × ℝ*))
42, 3mp1i 13 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (,) Fn (ℝ* × ℝ*))
5 elssuni 4859 . . . . . . . . . . . . . 14 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 (𝐽 ×t 𝐽))
6 tpr2rico.0 . . . . . . . . . . . . . . . 16 𝐽 = (topGen‘ran (,))
7 retop 23362 . . . . . . . . . . . . . . . 16 (topGen‘ran (,)) ∈ Top
86, 7eqeltri 2907 . . . . . . . . . . . . . . 15 𝐽 ∈ Top
9 uniretop 23363 . . . . . . . . . . . . . . . 16 ℝ = (topGen‘ran (,))
106unieqi 4839 . . . . . . . . . . . . . . . 16 𝐽 = (topGen‘ran (,))
119, 10eqtr4i 2845 . . . . . . . . . . . . . . 15 ℝ = 𝐽
128, 8, 11, 11txunii 22193 . . . . . . . . . . . . . 14 (ℝ × ℝ) = (𝐽 ×t 𝐽)
135, 12sseqtrrdi 4016 . . . . . . . . . . . . 13 (𝐴 ∈ (𝐽 ×t 𝐽) → 𝐴 ⊆ (ℝ × ℝ))
1413ad2antrr 724 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐴 ⊆ (ℝ × ℝ))
15 simplr 767 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋𝐴)
1614, 15sseldd 3966 . . . . . . . . . . 11 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (ℝ × ℝ))
17 xp1st 7713 . . . . . . . . . . 11 (𝑋 ∈ (ℝ × ℝ) → (1st𝑋) ∈ ℝ)
1816, 17syl 17 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ ℝ)
19 simpr 487 . . . . . . . . . . . 12 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2019rpred 12423 . . . . . . . . . . 11 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2120rehalfcld 11876 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈ ℝ)
2218, 21resubcld 11060 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) ∈ ℝ)
2322rexrd 10683 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) ∈ ℝ*)
2418, 21readdcld 10662 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ∈ ℝ)
2524rexrd 10683 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*)
26 fnovrn 7315 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ((1st𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,))
274, 23, 25, 26syl3anc 1366 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,))
28 xp2nd 7714 . . . . . . . . . . 11 (𝑋 ∈ (ℝ × ℝ) → (2nd𝑋) ∈ ℝ)
2916, 28syl 17 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ ℝ)
3029, 21resubcld 11060 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ)
3130rexrd 10683 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ*)
3229, 21readdcld 10662 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ)
3332rexrd 10683 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*)
34 fnovrn 7315 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ ((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,))
354, 31, 33, 34syl3anc 1366 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,))
36 eqidd 2820 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
37 xpeq1 5562 . . . . . . . . 9 (𝑥 = (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) → (𝑥 × 𝑦) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦))
3837eqeq2d 2830 . . . . . . . 8 (𝑥 = (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) → (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦) ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦)))
39 xpeq2 5569 . . . . . . . . 9 (𝑦 = (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
4039eqeq2d 2830 . . . . . . . 8 (𝑦 = (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) → (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × 𝑦) ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
4138, 40rspc2ev 3633 . . . . . . 7 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∈ ran (,) ∧ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ∈ ran (,) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
4227, 35, 36, 41syl3anc 1366 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
43 eqid 2819 . . . . . . 7 (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) = (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
44 vex 3496 . . . . . . . 8 𝑥 ∈ V
45 vex 3496 . . . . . . . 8 𝑦 ∈ V
4644, 45xpex 7468 . . . . . . 7 (𝑥 × 𝑦) ∈ V
4743, 46elrnmpo 7279 . . . . . 6 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) ↔ ∃𝑥 ∈ ran (,)∃𝑦 ∈ ran (,)((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) = (𝑥 × 𝑦))
4842, 47sylibr 236 . . . . 5 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)))
49 tpr2rico.2 . . . . 5 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦))
5048, 49eleqtrrdi 2922 . . . 4 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵)
5150ralrimiva 3180 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵)
52 xpss 5564 . . . . . . 7 (ℝ × ℝ) ⊆ (V × V)
5352, 16sseldi 3963 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ (V × V))
5418rexrd 10683 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ ℝ*)
5519rphalfcld 12435 . . . . . . . . 9 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑑 / 2) ∈ ℝ+)
5618, 55ltsubrpd 12455 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) − (𝑑 / 2)) < (1st𝑋))
5718, 55ltaddrpd 12456 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))
58 elioo1 12770 . . . . . . . . 9 ((((1st𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((1st𝑋) + (𝑑 / 2)) ∈ ℝ*) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ↔ ((1st𝑋) ∈ ℝ* ∧ ((1st𝑋) − (𝑑 / 2)) < (1st𝑋) ∧ (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))))
5923, 25, 58syl2anc 586 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ↔ ((1st𝑋) ∈ ℝ* ∧ ((1st𝑋) − (𝑑 / 2)) < (1st𝑋) ∧ (1st𝑋) < ((1st𝑋) + (𝑑 / 2)))))
6054, 56, 57, 59mpbir3and 1337 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))))
6129rexrd 10683 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ ℝ*)
6229, 55ltsubrpd 12455 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋))
6329, 55ltaddrpd 12456 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))
64 elioo1 12770 . . . . . . . . 9 ((((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* ∧ ((2nd𝑋) + (𝑑 / 2)) ∈ ℝ*) → ((2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ↔ ((2nd𝑋) ∈ ℝ* ∧ ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋) ∧ (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))))
6531, 33, 64syl2anc 586 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ↔ ((2nd𝑋) ∈ ℝ* ∧ ((2nd𝑋) − (𝑑 / 2)) < (2nd𝑋) ∧ (2nd𝑋) < ((2nd𝑋) + (𝑑 / 2)))))
6661, 62, 63, 65mpbir3and 1337 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))
6760, 66jca 514 . . . . . 6 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∧ (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
68 elxp7 7716 . . . . . 6 (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ↔ (𝑋 ∈ (V × V) ∧ ((1st𝑋) ∈ (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ∧ (2nd𝑋) ∈ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
6953, 67, 68sylanbrc 585 . . . . 5 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
7069ralrimiva 3180 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))))
71 mnfle 12521 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) − (𝑑 / 2)) ∈ ℝ* → -∞ ≤ ((1st𝑋) − (𝑑 / 2)))
7223, 71syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → -∞ ≤ ((1st𝑋) − (𝑑 / 2)))
73 pnfge 12517 . . . . . . . . . . . . . . . . . 18 (((1st𝑋) + (𝑑 / 2)) ∈ ℝ* → ((1st𝑋) + (𝑑 / 2)) ≤ +∞)
7425, 73syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((1st𝑋) + (𝑑 / 2)) ≤ +∞)
75 mnfxr 10690 . . . . . . . . . . . . . . . . . 18 -∞ ∈ ℝ*
76 pnfxr 10687 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
77 ioossioo 12821 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ ((1st𝑋) − (𝑑 / 2)) ∧ ((1st𝑋) + (𝑑 / 2)) ≤ +∞)) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
7875, 76, 77mpanl12 700 . . . . . . . . . . . . . . . . 17 ((-∞ ≤ ((1st𝑋) − (𝑑 / 2)) ∧ ((1st𝑋) + (𝑑 / 2)) ≤ +∞) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
7972, 74, 78syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
80 ioomax 12803 . . . . . . . . . . . . . . . 16 (-∞(,)+∞) = ℝ
8179, 80sseqtrdi 4015 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ ℝ)
82 mnfle 12521 . . . . . . . . . . . . . . . . . 18 (((2nd𝑋) − (𝑑 / 2)) ∈ ℝ* → -∞ ≤ ((2nd𝑋) − (𝑑 / 2)))
8331, 82syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → -∞ ≤ ((2nd𝑋) − (𝑑 / 2)))
84 pnfge 12517 . . . . . . . . . . . . . . . . . 18 (((2nd𝑋) + (𝑑 / 2)) ∈ ℝ* → ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)
8533, 84syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)
86 ioossioo 12821 . . . . . . . . . . . . . . . . . 18 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ≤ ((2nd𝑋) − (𝑑 / 2)) ∧ ((2nd𝑋) + (𝑑 / 2)) ≤ +∞)) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8775, 76, 86mpanl12 700 . . . . . . . . . . . . . . . . 17 ((-∞ ≤ ((2nd𝑋) − (𝑑 / 2)) ∧ ((2nd𝑋) + (𝑑 / 2)) ≤ +∞) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8883, 85, 87syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ (-∞(,)+∞))
8988, 80sseqtrdi 4015 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ ℝ)
90 xpss12 5563 . . . . . . . . . . . . . . 15 (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) ⊆ ℝ ∧ (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))) ⊆ ℝ) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (ℝ × ℝ))
9181, 89, 90syl2anc 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (ℝ × ℝ))
9291sselda 3965 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (ℝ × ℝ))
9392expcom 416 . . . . . . . . . . . 12 (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝑥 ∈ (ℝ × ℝ)))
9493ancld 553 . . . . . . . . . . 11 (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ))))
9594imdistanri 572 . . . . . . . . . 10 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
9613adantr 483 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝐴 ⊆ (ℝ × ℝ))
97 simpr1 1189 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝑋𝐴)
9896, 97sseldd 3966 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ (𝑋𝐴𝑑 ∈ ℝ+𝑥 ∈ (ℝ × ℝ))) → 𝑋 ∈ (ℝ × ℝ))
99983anassrs 1355 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑋 ∈ (ℝ × ℝ))
100 simpr 487 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑥 ∈ (ℝ × ℝ))
101 simplr 767 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑑 ∈ ℝ+)
102101rphalfcld 12435 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑑 / 2) ∈ ℝ+)
103 tpr2rico.1 . . . . . . . . . . . . . . 15 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣)))
104103cnre2csqima 31147 . . . . . . . . . . . . . 14 ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑥 ∈ (ℝ × ℝ) ∧ (𝑑 / 2) ∈ ℝ+) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))))
10599, 100, 102, 104syl3anc 1366 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))))
106 eqid 2819 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
107103, 6, 106cnrehmeo 23549 . . . . . . . . . . . . . . . . . . . 20 𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld))
108106cnfldtopon 23383 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
109108toponunii 21516 . . . . . . . . . . . . . . . . . . . . 21 ℂ = (TopOpen‘ℂfld)
11012, 109hmeof1o 22364 . . . . . . . . . . . . . . . . . . . 20 (𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld)) → 𝐺:(ℝ × ℝ)–1-1-onto→ℂ)
111 f1of 6608 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)⟶ℂ)
112107, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . . 19 𝐺:(ℝ × ℝ)⟶ℂ
113112a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝐺:(ℝ × ℝ)⟶ℂ)
114113, 99ffvelrnd 6845 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑋) ∈ ℂ)
115112a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → 𝐺:(ℝ × ℝ)⟶ℂ)
116115ffvelrnda 6844 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑥) ∈ ℂ)
117 sqsscirc2 31145 . . . . . . . . . . . . . . . . 17 ((((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) ∧ 𝑑 ∈ ℝ+) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑))
118114, 116, 101, 117syl21anc 835 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑))
119118imp 409 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑)
120101rpxrd 12424 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝑑 ∈ ℝ*)
121120adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → 𝑑 ∈ ℝ*)
122 cnxmet 23373 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) ∈ (∞Met‘ℂ)
123121, 122jctil 522 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*))
124114adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑋) ∈ ℂ)
125116adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑥) ∈ ℂ)
126124, 125jca 514 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ))
127 eqid 2819 . . . . . . . . . . . . . . . . . . 19 (abs ∘ − ) = (abs ∘ − )
128127cnmetdval 23371 . . . . . . . . . . . . . . . . . 18 (((𝐺𝑥) ∈ ℂ ∧ (𝐺𝑋) ∈ ℂ) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) = (abs‘((𝐺𝑥) − (𝐺𝑋))))
129125, 124, 128syl2anc 586 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) = (abs‘((𝐺𝑥) − (𝐺𝑋))))
130 simpr 487 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑)
131129, 130eqbrtrd 5079 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑)
132 elbl3 22994 . . . . . . . . . . . . . . . . 17 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ)) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ↔ ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑))
133132biimpar 480 . . . . . . . . . . . . . . . 16 (((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐺𝑋) ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ)) ∧ ((𝐺𝑥)(abs ∘ − )(𝐺𝑋)) < 𝑑) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
134123, 126, 131, 133syl21anc 835 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ (abs‘((𝐺𝑥) − (𝐺𝑋))) < 𝑑) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
135119, 134syldan 593 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ ((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2))) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
136135ex 415 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (((abs‘(ℜ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2) ∧ (abs‘(ℑ‘((𝐺𝑥) − (𝐺𝑋)))) < (𝑑 / 2)) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
137105, 136syld 47 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
138 f1ocnv 6620 . . . . . . . . . . . . . . 15 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:ℂ–1-1-onto→(ℝ × ℝ))
139107, 110, 138mp2b 10 . . . . . . . . . . . . . 14 𝐺:ℂ–1-1-onto→(ℝ × ℝ)
140 f1ofun 6610 . . . . . . . . . . . . . 14 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → Fun 𝐺)
141139, 140ax-mp 5 . . . . . . . . . . . . 13 Fun 𝐺
142 f1odm 6612 . . . . . . . . . . . . . . 15 (𝐺:ℂ–1-1-onto→(ℝ × ℝ) → dom 𝐺 = ℂ)
143139, 142ax-mp 5 . . . . . . . . . . . . . 14 dom 𝐺 = ℂ
144116, 143eleqtrrdi 2922 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺𝑥) ∈ dom 𝐺)
145 funfvima 6984 . . . . . . . . . . . . 13 ((Fun 𝐺 ∧ (𝐺𝑥) ∈ dom 𝐺) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) → (𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
146141, 144, 145sylancr 589 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺𝑥) ∈ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) → (𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
147107, 110mp1i 13 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → 𝐺:(ℝ × ℝ)–1-1-onto→ℂ)
148 f1ocnvfv1 7025 . . . . . . . . . . . . . . 15 ((𝐺:(ℝ × ℝ)–1-1-onto→ℂ ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺‘(𝐺𝑥)) = 𝑥)
149147, 100, 148syl2anc 586 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝐺‘(𝐺𝑥)) = 𝑥)
150149eleq1d 2895 . . . . . . . . . . . . 13 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ↔ 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
151150biimpd 231 . . . . . . . . . . . 12 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → ((𝐺‘(𝐺𝑥)) ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
152137, 146, 1513syld 60 . . . . . . . . . . 11 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
153152imp 409 . . . . . . . . . 10 (((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ (ℝ × ℝ)) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
15495, 153syl 17 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) ∧ 𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
155154ex 415 . . . . . . . 8 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → (𝑥 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → 𝑥 ∈ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))))
156155ssrdv 3971 . . . . . . 7 (((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) ∧ 𝑑 ∈ ℝ+) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
157156ralrimiva 3180 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)))
158103mpofun 7268 . . . . . . . . . 10 Fun 𝐺
159158a1i 11 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → Fun 𝐺)
16013sselda 3965 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 ∈ (ℝ × ℝ))
161 f1odm 6612 . . . . . . . . . . 11 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → dom 𝐺 = (ℝ × ℝ))
162107, 110, 161mp2b 10 . . . . . . . . . 10 dom 𝐺 = (ℝ × ℝ)
163160, 162eleqtrrdi 2922 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋 ∈ dom 𝐺)
164 simpr 487 . . . . . . . . 9 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → 𝑋𝐴)
165 funfvima 6984 . . . . . . . . . 10 ((Fun 𝐺𝑋 ∈ dom 𝐺) → (𝑋𝐴 → (𝐺𝑋) ∈ (𝐺𝐴)))
166165imp 409 . . . . . . . . 9 (((Fun 𝐺𝑋 ∈ dom 𝐺) ∧ 𝑋𝐴) → (𝐺𝑋) ∈ (𝐺𝐴))
167159, 163, 164, 166syl21anc 835 . . . . . . . 8 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → (𝐺𝑋) ∈ (𝐺𝐴))
168 hmeoima 22365 . . . . . . . . . . 11 ((𝐺 ∈ ((𝐽 ×t 𝐽)Homeo(TopOpen‘ℂfld)) ∧ 𝐴 ∈ (𝐽 ×t 𝐽)) → (𝐺𝐴) ∈ (TopOpen‘ℂfld))
169107, 168mpan 688 . . . . . . . . . 10 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝐺𝐴) ∈ (TopOpen‘ℂfld))
170106cnfldtopn 23382 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
171170elmopn2 23047 . . . . . . . . . . . 12 ((abs ∘ − ) ∈ (∞Met‘ℂ) → ((𝐺𝐴) ∈ (TopOpen‘ℂfld) ↔ ((𝐺𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))))
172122, 171ax-mp 5 . . . . . . . . . . 11 ((𝐺𝐴) ∈ (TopOpen‘ℂfld) ↔ ((𝐺𝐴) ⊆ ℂ ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
173172simprbi 499 . . . . . . . . . 10 ((𝐺𝐴) ∈ (TopOpen‘ℂfld) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
174169, 173syl 17 . . . . . . . . 9 (𝐴 ∈ (𝐽 ×t 𝐽) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
175174adantr 483 . . . . . . . 8 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
176 oveq1 7155 . . . . . . . . . . 11 (𝑚 = (𝐺𝑋) → (𝑚(ball‘(abs ∘ − ))𝑑) = ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑))
177176sseq1d 3996 . . . . . . . . . 10 (𝑚 = (𝐺𝑋) → ((𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) ↔ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
178177rexbidv 3295 . . . . . . . . 9 (𝑚 = (𝐺𝑋) → (∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) ↔ ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)))
179178rspcva 3619 . . . . . . . 8 (((𝐺𝑋) ∈ (𝐺𝐴) ∧ ∀𝑚 ∈ (𝐺𝐴)∃𝑑 ∈ ℝ+ (𝑚(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴)) → ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
180167, 175, 179syl2anc 586 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴))
181 imass2 5958 . . . . . . . . . 10 (((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (𝐺 “ (𝐺𝐴)))
182 f1of1 6607 . . . . . . . . . . . . 13 (𝐺:(ℝ × ℝ)–1-1-onto→ℂ → 𝐺:(ℝ × ℝ)–1-1→ℂ)
183107, 110, 182mp2b 10 . . . . . . . . . . . 12 𝐺:(ℝ × ℝ)–1-1→ℂ
184 f1imacnv 6624 . . . . . . . . . . . 12 ((𝐺:(ℝ × ℝ)–1-1→ℂ ∧ 𝐴 ⊆ (ℝ × ℝ)) → (𝐺 “ (𝐺𝐴)) = 𝐴)
185183, 13, 184sylancr 589 . . . . . . . . . . 11 (𝐴 ∈ (𝐽 ×t 𝐽) → (𝐺 “ (𝐺𝐴)) = 𝐴)
186185sseq2d 3997 . . . . . . . . . 10 (𝐴 ∈ (𝐽 ×t 𝐽) → ((𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ (𝐺 “ (𝐺𝐴)) ↔ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
187181, 186syl5ib 246 . . . . . . . . 9 (𝐴 ∈ (𝐽 ×t 𝐽) → (((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
188187reximdv 3271 . . . . . . . 8 (𝐴 ∈ (𝐽 ×t 𝐽) → (∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
189188adantr 483 . . . . . . 7 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → (∃𝑑 ∈ ℝ+ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑) ⊆ (𝐺𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
190180, 189mpd 15 . . . . . 6 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴)
191 r19.29 3252 . . . . . 6 ((∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ ∃𝑑 ∈ ℝ+ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
192157, 190, 191syl2anc 586 . . . . 5 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴))
193 sstr 3973 . . . . . 6 ((((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
194193reximi 3241 . . . . 5 (∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ∧ (𝐺 “ ((𝐺𝑋)(ball‘(abs ∘ − ))𝑑)) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
195192, 194syl 17 . . . 4 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)
196 r19.29 3252 . . . 4 ((∀𝑑 ∈ ℝ+ 𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ∃𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴) → ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
19770, 195, 196syl2anc 586 . . 3 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
198 r19.29 3252 . . 3 ((∀𝑑 ∈ ℝ+ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ ∃𝑑 ∈ ℝ+ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
19951, 197, 198syl2anc 586 . 2 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
200 eleq2 2899 . . . . 5 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝑋𝑟𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2))))))
201 sseq1 3990 . . . . 5 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → (𝑟𝐴 ↔ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴))
202200, 201anbi12d 632 . . . 4 (𝑟 = ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) → ((𝑋𝑟𝑟𝐴) ↔ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)))
203202rspcev 3621 . . 3 ((((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
204203rexlimivw 3280 . 2 (∃𝑑 ∈ ℝ+ (((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∈ 𝐵 ∧ (𝑋 ∈ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ∧ ((((1st𝑋) − (𝑑 / 2))(,)((1st𝑋) + (𝑑 / 2))) × (((2nd𝑋) − (𝑑 / 2))(,)((2nd𝑋) + (𝑑 / 2)))) ⊆ 𝐴)) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
205199, 204syl 17 1 ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑟𝐵 (𝑋𝑟𝑟𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  wral 3136  wrex 3137  Vcvv 3493  wss 3934  𝒫 cpw 4537   cuni 4830   class class class wbr 5057   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  cima 5551  ccom 5552  Fun wfun 6342   Fn wfn 6343  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  cmpo 7150  1st c1st 7679  2nd c2nd 7680  cc 10527  cr 10528  ici 10531   + caddc 10532   · cmul 10534  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  2c2 11684  +crp 12381  (,)cioo 12730  cre 14448  cim 14449  abscabs 14585  TopOpenctopn 16687  topGenctg 16703  ∞Metcxmet 20522  ballcbl 20524  fldccnfld 20537  Topctop 21493   ×t ctx 22160  Homeochmeo 22353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cn 21827  df-cnp 21828  df-tx 22162  df-hmeo 22355  df-xms 22922  df-ms 22923  df-tms 22924  df-cncf 23478
This theorem is referenced by:  dya2iocnei  31533
  Copyright terms: Public domain W3C validator