Step | Hyp | Ref
| Expression |
1 | | prmoval 16962 |
. . 3
β’ (π β β0
β (#pβπ) = βπ β (1...π)if(π β β, π, 1)) |
2 | | eqidd 2733 |
. . . . . 6
β’ (π β (1...π) β (π β β β¦ if(π β β, π, 1)) = (π β β β¦ if(π β β, π, 1))) |
3 | | simpr 485 |
. . . . . . . 8
β’ ((π β (1...π) β§ π = π) β π = π) |
4 | 3 | eleq1d 2818 |
. . . . . . 7
β’ ((π β (1...π) β§ π = π) β (π β β β π β β)) |
5 | 4, 3 | ifbieq1d 4551 |
. . . . . 6
β’ ((π β (1...π) β§ π = π) β if(π β β, π, 1) = if(π β β, π, 1)) |
6 | | elfznn 13526 |
. . . . . 6
β’ (π β (1...π) β π β β) |
7 | | 1nn 12219 |
. . . . . . . 8
β’ 1 β
β |
8 | 7 | a1i 11 |
. . . . . . 7
β’ (π β (1...π) β 1 β β) |
9 | 6, 8 | ifcld 4573 |
. . . . . 6
β’ (π β (1...π) β if(π β β, π, 1) β β) |
10 | 2, 5, 6, 9 | fvmptd 7002 |
. . . . 5
β’ (π β (1...π) β ((π β β β¦ if(π β β, π, 1))βπ) = if(π β β, π, 1)) |
11 | 10 | eqcomd 2738 |
. . . 4
β’ (π β (1...π) β if(π β β, π, 1) = ((π β β β¦ if(π β β, π, 1))βπ)) |
12 | 11 | prodeq2i 15859 |
. . 3
β’
βπ β
(1...π)if(π β β, π, 1) = βπ β (1...π)((π β β β¦ if(π β β, π, 1))βπ) |
13 | 1, 12 | eqtrdi 2788 |
. 2
β’ (π β β0
β (#pβπ) = βπ β (1...π)((π β β β¦ if(π β β, π, 1))βπ)) |
14 | | fzfid 13934 |
. . . 4
β’ (π β β0
β (1...π) β
Fin) |
15 | | fz1ssnn 13528 |
. . . 4
β’
(1...π) β
β |
16 | 14, 15 | jctil 520 |
. . 3
β’ (π β β0
β ((1...π) β
β β§ (1...π)
β Fin)) |
17 | | fzssz 13499 |
. . . . 5
β’
(1...π) β
β€ |
18 | 17 | a1i 11 |
. . . 4
β’ (π β β0
β (1...π) β
β€) |
19 | | 0nelfz1 13516 |
. . . . 5
β’ 0 β
(1...π) |
20 | 19 | a1i 11 |
. . . 4
β’ (π β β0
β 0 β (1...π)) |
21 | | lcmfn0cl 16559 |
. . . 4
β’
(((1...π) β
β€ β§ (1...π)
β Fin β§ 0 β (1...π)) β (lcmβ(1...π)) β
β) |
22 | 18, 14, 20, 21 | syl3anc 1371 |
. . 3
β’ (π β β0
β (lcmβ(1...π)) β β) |
23 | | id 22 |
. . . . . 6
β’ (π β β β π β
β) |
24 | 7 | a1i 11 |
. . . . . 6
β’ (π β β β 1 β
β) |
25 | 23, 24 | ifcld 4573 |
. . . . 5
β’ (π β β β if(π β β, π, 1) β
β) |
26 | 25 | adantl 482 |
. . . 4
β’ ((π β β0
β§ π β β)
β if(π β β,
π, 1) β
β) |
27 | 26 | fmpttd 7111 |
. . 3
β’ (π β β0
β (π β β
β¦ if(π β
β, π,
1)):ββΆβ) |
28 | | simpr 485 |
. . . . . . 7
β’ ((π β β0
β§ π β (1...π)) β π β (1...π)) |
29 | 28 | adantr 481 |
. . . . . 6
β’ (((π β β0
β§ π β (1...π)) β§ π₯ β ((1...π) β {π})) β π β (1...π)) |
30 | | eldifi 4125 |
. . . . . . 7
β’ (π₯ β ((1...π) β {π}) β π₯ β (1...π)) |
31 | 30 | adantl 482 |
. . . . . 6
β’ (((π β β0
β§ π β (1...π)) β§ π₯ β ((1...π) β {π})) β π₯ β (1...π)) |
32 | | eldif 3957 |
. . . . . . . 8
β’ (π₯ β ((1...π) β {π}) β (π₯ β (1...π) β§ Β¬ π₯ β {π})) |
33 | | velsn 4643 |
. . . . . . . . . . 11
β’ (π₯ β {π} β π₯ = π) |
34 | 33 | biimpri 227 |
. . . . . . . . . 10
β’ (π₯ = π β π₯ β {π}) |
35 | 34 | equcoms 2023 |
. . . . . . . . 9
β’ (π = π₯ β π₯ β {π}) |
36 | 35 | necon3bi 2967 |
. . . . . . . 8
β’ (Β¬
π₯ β {π} β π β π₯) |
37 | 32, 36 | simplbiim 505 |
. . . . . . 7
β’ (π₯ β ((1...π) β {π}) β π β π₯) |
38 | 37 | adantl 482 |
. . . . . 6
β’ (((π β β0
β§ π β (1...π)) β§ π₯ β ((1...π) β {π})) β π β π₯) |
39 | | eqid 2732 |
. . . . . . 7
β’ (π β β β¦ if(π β β, π, 1)) = (π β β β¦ if(π β β, π, 1)) |
40 | 39 | fvprmselgcd1 16974 |
. . . . . 6
β’ ((π β (1...π) β§ π₯ β (1...π) β§ π β π₯) β (((π β β β¦ if(π β β, π, 1))βπ) gcd ((π β β β¦ if(π β β, π, 1))βπ₯)) = 1) |
41 | 29, 31, 38, 40 | syl3anc 1371 |
. . . . 5
β’ (((π β β0
β§ π β (1...π)) β§ π₯ β ((1...π) β {π})) β (((π β β β¦ if(π β β, π, 1))βπ) gcd ((π β β β¦ if(π β β, π, 1))βπ₯)) = 1) |
42 | 41 | ralrimiva 3146 |
. . . 4
β’ ((π β β0
β§ π β (1...π)) β βπ₯ β ((1...π) β {π})(((π β β β¦ if(π β β, π, 1))βπ) gcd ((π β β β¦ if(π β β, π, 1))βπ₯)) = 1) |
43 | 42 | ralrimiva 3146 |
. . 3
β’ (π β β0
β βπ β
(1...π)βπ₯ β ((1...π) β {π})(((π β β β¦ if(π β β, π, 1))βπ) gcd ((π β β β¦ if(π β β, π, 1))βπ₯)) = 1) |
44 | | eqidd 2733 |
. . . . . 6
β’ ((π β β0
β§ π β (1...π)) β (π β β β¦ if(π β β, π, 1)) = (π β β β¦ if(π β β, π, 1))) |
45 | | simpr 485 |
. . . . . . . 8
β’ (((π β β0
β§ π β (1...π)) β§ π = π) β π = π) |
46 | 45 | eleq1d 2818 |
. . . . . . 7
β’ (((π β β0
β§ π β (1...π)) β§ π = π) β (π β β β π β β)) |
47 | 46, 45 | ifbieq1d 4551 |
. . . . . 6
β’ (((π β β0
β§ π β (1...π)) β§ π = π) β if(π β β, π, 1) = if(π β β, π, 1)) |
48 | 15, 28 | sselid 3979 |
. . . . . 6
β’ ((π β β0
β§ π β (1...π)) β π β β) |
49 | 17, 28 | sselid 3979 |
. . . . . . 7
β’ ((π β β0
β§ π β (1...π)) β π β β€) |
50 | | 1zzd 12589 |
. . . . . . 7
β’ ((π β β0
β§ π β (1...π)) β 1 β
β€) |
51 | 49, 50 | ifcld 4573 |
. . . . . 6
β’ ((π β β0
β§ π β (1...π)) β if(π β β, π, 1) β β€) |
52 | 44, 47, 48, 51 | fvmptd 7002 |
. . . . 5
β’ ((π β β0
β§ π β (1...π)) β ((π β β β¦ if(π β β, π, 1))βπ) = if(π β β, π, 1)) |
53 | | breq1 5150 |
. . . . . 6
β’ (π₯ = if(π β β, π, 1) β (π₯ β₯ (lcmβ(1...π)) β if(π β β, π, 1) β₯ (lcmβ(1...π)))) |
54 | 16 | adantr 481 |
. . . . . . 7
β’ ((π β β0
β§ π β (1...π)) β ((1...π) β β β§
(1...π) β
Fin)) |
55 | 17 | 2a1i 12 |
. . . . . . . 8
β’
((1...π) β Fin
β ((1...π) β
β β (1...π)
β β€)) |
56 | 55 | imdistanri 570 |
. . . . . . 7
β’
(((1...π) β
β β§ (1...π)
β Fin) β ((1...π)
β β€ β§ (1...π) β Fin)) |
57 | | dvdslcmf 16564 |
. . . . . . 7
β’
(((1...π) β
β€ β§ (1...π)
β Fin) β βπ₯ β (1...π)π₯ β₯ (lcmβ(1...π))) |
58 | 54, 56, 57 | 3syl 18 |
. . . . . 6
β’ ((π β β0
β§ π β (1...π)) β βπ₯ β (1...π)π₯ β₯ (lcmβ(1...π))) |
59 | | elfzuz2 13502 |
. . . . . . . . 9
β’ (π β (1...π) β π β
(β€β₯β1)) |
60 | 59 | adantl 482 |
. . . . . . . 8
β’ ((π β β0
β§ π β (1...π)) β π β
(β€β₯β1)) |
61 | | eluzfz1 13504 |
. . . . . . . 8
β’ (π β
(β€β₯β1) β 1 β (1...π)) |
62 | 60, 61 | syl 17 |
. . . . . . 7
β’ ((π β β0
β§ π β (1...π)) β 1 β (1...π)) |
63 | 28, 62 | ifcld 4573 |
. . . . . 6
β’ ((π β β0
β§ π β (1...π)) β if(π β β, π, 1) β (1...π)) |
64 | 53, 58, 63 | rspcdva 3613 |
. . . . 5
β’ ((π β β0
β§ π β (1...π)) β if(π β β, π, 1) β₯ (lcmβ(1...π))) |
65 | 52, 64 | eqbrtrd 5169 |
. . . 4
β’ ((π β β0
β§ π β (1...π)) β ((π β β β¦ if(π β β, π, 1))βπ) β₯ (lcmβ(1...π))) |
66 | 65 | ralrimiva 3146 |
. . 3
β’ (π β β0
β βπ β
(1...π)((π β β β¦ if(π β β, π, 1))βπ) β₯ (lcmβ(1...π))) |
67 | | coprmproddvds 16596 |
. . 3
β’
((((1...π) β
β β§ (1...π)
β Fin) β§ ((lcmβ(1...π)) β β β§ (π β β β¦ if(π β β, π, 1)):ββΆβ) β§
(βπ β
(1...π)βπ₯ β ((1...π) β {π})(((π β β β¦ if(π β β, π, 1))βπ) gcd ((π β β β¦ if(π β β, π, 1))βπ₯)) = 1 β§ βπ β (1...π)((π β β β¦ if(π β β, π, 1))βπ) β₯ (lcmβ(1...π)))) β βπ β (1...π)((π β β β¦ if(π β β, π, 1))βπ) β₯ (lcmβ(1...π))) |
68 | 16, 22, 27, 43, 66, 67 | syl122anc 1379 |
. 2
β’ (π β β0
β βπ β
(1...π)((π β β β¦ if(π β β, π, 1))βπ) β₯ (lcmβ(1...π))) |
69 | 13, 68 | eqbrtrd 5169 |
1
β’ (π β β0
β (#pβπ) β₯ (lcmβ(1...π))) |