MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmat2matmon Structured version   Visualization version   GIF version

Theorem monmat2matmon 22851
Description: The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmat2matmon (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))

Proof of Theorem monmat2matmon
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 crngring 20272 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑁 ∈ Fin)
3 simplr 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑅 ∈ Ring)
4 monmat2matmon.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
6 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
7 monmat2matmon.p . . . . 5 𝑃 = (Poly1𝑅)
8 monmat2matmon.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
9 monmat2matmon.b . . . . 5 𝐵 = (Base‘𝐶)
10 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
11 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
12 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
134, 5, 6, 7, 8, 9, 10, 11, 12mat2pmatscmxcl 22767 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵)
14 monmat2matmon.m1 . . . . 5 = ( ·𝑠𝑄)
15 monmat2matmon.e1 . . . . 5 = (.g‘(mulGrp‘𝑄))
16 monmat2matmon.x . . . . 5 𝑋 = (var1𝐴)
17 monmat2matmon.q . . . . 5 𝑄 = (Poly1𝐴)
18 monmat2matmon.i . . . . 5 𝐼 = (𝑁 pMatToMatPoly 𝑅)
197, 8, 9, 14, 15, 16, 4, 17, 18pm2mpfval 22823 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
202, 3, 13, 19syl3anc 1371 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
211, 20sylanl2 680 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
22 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
23 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑀𝐾𝐿 ∈ ℕ0))
2423anim1i 614 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
25 df-3an 1089 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0) ↔ ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
2624, 25sylibr 234 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0))
27 eqid 2740 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
287, 8, 4, 5, 27, 11, 12, 10, 6monmatcollpw 22806 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0)) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
2922, 26, 28syl2anc 583 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
3029oveq1d 7463 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)))
311a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑅 ∈ CRing → 𝑅 ∈ Ring))
3231anim2d 611 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)))
3332anim1d 610 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0))))
3433imdistanri 569 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0))
35 ovif 7548 . . . . . . . 8 (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
364matring 22470 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3717ply1sca 22275 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
3836, 37syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
3938ad2antrr 725 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
4039fveq2d 6924 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4140oveq1d 7463 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
4217ply1lmod 22274 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
4336, 42syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
4443ad2antrr 725 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
45 eqid 2740 . . . . . . . . . . . . 13 (mulGrp‘𝑄) = (mulGrp‘𝑄)
46 eqid 2740 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘𝑄)
4745, 46mgpbas 20167 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘(mulGrp‘𝑄))
4817ply1ring 22270 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
4936, 48syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
5045ringmgp 20266 . . . . . . . . . . . . . 14 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
5149, 50syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
5251ad2antrr 725 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
53 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5416, 17, 46vr1cl 22240 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝑋 ∈ (Base‘𝑄))
5536, 54syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑄))
5655ad2antrr 725 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑄))
5747, 15, 52, 53, 56mulgnn0cld 19135 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
58 eqid 2740 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
59 eqid 2740 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
60 eqid 2740 . . . . . . . . . . . 12 (0g𝑄) = (0g𝑄)
6146, 58, 14, 59, 60lmod0vs 20915 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6244, 57, 61syl2anc 583 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6341, 62eqtrd 2780 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
6463ifeq2d 4568 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6535, 64eqtrid 2792 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6634, 65syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6730, 66eqtrd 2780 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6867mpteq2dva 5266 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))))
6968oveq2d 7464 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))))
70 ringmnd 20270 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
7149, 70syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
7271adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑄 ∈ Mnd)
73 nn0ex 12559 . . . . . 6 0 ∈ V
7473a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ℕ0 ∈ V)
75 simprr 772 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 ∈ ℕ0)
76 eqid 2740 . . . . 5 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
7738fveq2d 6924 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘(Scalar‘𝑄)))
785, 77eqtrid 2792 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝑄)))
7978eleq2d 2830 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐾𝑀 ∈ (Base‘(Scalar‘𝑄))))
8079biimpcd 249 . . . . . . . . . 10 (𝑀𝐾 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8180adantr 480 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8281impcom 407 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
8382adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
84 eqid 2740 . . . . . . . 8 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
8546, 58, 14, 84lmodvscl 20898 . . . . . . 7 ((𝑄 ∈ LMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8644, 83, 57, 85syl3anc 1371 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8786ralrimiva 3152 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ∀𝑘 ∈ ℕ0 (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8860, 72, 74, 75, 76, 87gsummpt1n0 20007 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
891, 88sylanl2 680 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
9069, 89eqtrd 2780 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
91 csbov2g 7496 . . . 4 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 𝐿 / 𝑘(𝑘 𝑋)))
92 csbov1g 7495 . . . . . 6 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 / 𝑘𝑘 𝑋))
93 csbvarg 4457 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 / 𝑘𝑘 = 𝐿)
9493oveq1d 7463 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 / 𝑘𝑘 𝑋) = (𝐿 𝑋))
9592, 94eqtrd 2780 . . . . 5 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 𝑋))
9695oveq2d 7464 . . . 4 (𝐿 ∈ ℕ0 → (𝑀 𝐿 / 𝑘(𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9791, 96eqtrd 2780 . . 3 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9897ad2antll 728 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9921, 90, 983eqtrd 2784 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  ifcif 4548  cmpt 5249  cfv 6573  (class class class)co 7448  Fincfn 9003  0cn0 12553  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  .gcmg 19107  mulGrpcmgp 20161  Ringcrg 20260  CRingccrg 20261  LModclmod 20880  var1cv1 22198  Poly1cpl1 22199   Mat cmat 22432   matToPolyMat cmat2pmat 22731   decompPMat cdecpmat 22789   pMatToMatPoly cpm2mp 22819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-assa 21896  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mamu 22416  df-mat 22433  df-mat2pmat 22734  df-decpmat 22790  df-pm2mp 22820
This theorem is referenced by:  pm2mp  22852
  Copyright terms: Public domain W3C validator