MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmat2matmon Structured version   Visualization version   GIF version

Theorem monmat2matmon 22762
Description: The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmat2matmon (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))

Proof of Theorem monmat2matmon
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 crngring 20205 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑁 ∈ Fin)
3 simplr 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑅 ∈ Ring)
4 monmat2matmon.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
6 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
7 monmat2matmon.p . . . . 5 𝑃 = (Poly1𝑅)
8 monmat2matmon.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
9 monmat2matmon.b . . . . 5 𝐵 = (Base‘𝐶)
10 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
11 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
12 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
134, 5, 6, 7, 8, 9, 10, 11, 12mat2pmatscmxcl 22678 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵)
14 monmat2matmon.m1 . . . . 5 = ( ·𝑠𝑄)
15 monmat2matmon.e1 . . . . 5 = (.g‘(mulGrp‘𝑄))
16 monmat2matmon.x . . . . 5 𝑋 = (var1𝐴)
17 monmat2matmon.q . . . . 5 𝑄 = (Poly1𝐴)
18 monmat2matmon.i . . . . 5 𝐼 = (𝑁 pMatToMatPoly 𝑅)
197, 8, 9, 14, 15, 16, 4, 17, 18pm2mpfval 22734 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
202, 3, 13, 19syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
211, 20sylanl2 681 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
22 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
23 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑀𝐾𝐿 ∈ ℕ0))
2423anim1i 615 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
25 df-3an 1088 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0) ↔ ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
2624, 25sylibr 234 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0))
27 eqid 2735 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
287, 8, 4, 5, 27, 11, 12, 10, 6monmatcollpw 22717 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0)) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
2922, 26, 28syl2anc 584 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
3029oveq1d 7420 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)))
311a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑅 ∈ CRing → 𝑅 ∈ Ring))
3231anim2d 612 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)))
3332anim1d 611 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0))))
3433imdistanri 569 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0))
35 ovif 7505 . . . . . . . 8 (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
364matring 22381 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3717ply1sca 22188 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
3836, 37syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
3938ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
4039fveq2d 6880 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4140oveq1d 7420 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
4217ply1lmod 22187 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
4336, 42syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
4443ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
45 eqid 2735 . . . . . . . . . . . . 13 (mulGrp‘𝑄) = (mulGrp‘𝑄)
46 eqid 2735 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘𝑄)
4745, 46mgpbas 20105 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘(mulGrp‘𝑄))
4817ply1ring 22183 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
4936, 48syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
5045ringmgp 20199 . . . . . . . . . . . . . 14 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
5149, 50syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
5251ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
53 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5416, 17, 46vr1cl 22153 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝑋 ∈ (Base‘𝑄))
5536, 54syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑄))
5655ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑄))
5747, 15, 52, 53, 56mulgnn0cld 19078 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
58 eqid 2735 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
59 eqid 2735 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
60 eqid 2735 . . . . . . . . . . . 12 (0g𝑄) = (0g𝑄)
6146, 58, 14, 59, 60lmod0vs 20852 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6244, 57, 61syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6341, 62eqtrd 2770 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
6463ifeq2d 4521 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6535, 64eqtrid 2782 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6634, 65syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6730, 66eqtrd 2770 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6867mpteq2dva 5214 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))))
6968oveq2d 7421 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))))
70 ringmnd 20203 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
7149, 70syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
7271adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑄 ∈ Mnd)
73 nn0ex 12507 . . . . . 6 0 ∈ V
7473a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ℕ0 ∈ V)
75 simprr 772 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 ∈ ℕ0)
76 eqid 2735 . . . . 5 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
7738fveq2d 6880 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘(Scalar‘𝑄)))
785, 77eqtrid 2782 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝑄)))
7978eleq2d 2820 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐾𝑀 ∈ (Base‘(Scalar‘𝑄))))
8079biimpcd 249 . . . . . . . . . 10 (𝑀𝐾 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8180adantr 480 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8281impcom 407 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
8382adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
84 eqid 2735 . . . . . . . 8 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
8546, 58, 14, 84lmodvscl 20835 . . . . . . 7 ((𝑄 ∈ LMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8644, 83, 57, 85syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8786ralrimiva 3132 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ∀𝑘 ∈ ℕ0 (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8860, 72, 74, 75, 76, 87gsummpt1n0 19946 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
891, 88sylanl2 681 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
9069, 89eqtrd 2770 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
91 csbov2g 7453 . . . 4 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 𝐿 / 𝑘(𝑘 𝑋)))
92 csbov1g 7452 . . . . . 6 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 / 𝑘𝑘 𝑋))
93 csbvarg 4409 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 / 𝑘𝑘 = 𝐿)
9493oveq1d 7420 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 / 𝑘𝑘 𝑋) = (𝐿 𝑋))
9592, 94eqtrd 2770 . . . . 5 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 𝑋))
9695oveq2d 7421 . . . 4 (𝐿 ∈ ℕ0 → (𝑀 𝐿 / 𝑘(𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9791, 96eqtrd 2770 . . 3 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9897ad2antll 729 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9921, 90, 983eqtrd 2774 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  csb 3874  ifcif 4500  cmpt 5201  cfv 6531  (class class class)co 7405  Fincfn 8959  0cn0 12501  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  .gcmg 19050  mulGrpcmgp 20100  Ringcrg 20193  CRingccrg 20194  LModclmod 20817  var1cv1 22111  Poly1cpl1 22112   Mat cmat 22345   matToPolyMat cmat2pmat 22642   decompPMat cdecpmat 22700   pMatToMatPoly cpm2mp 22730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-assa 21813  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mamu 22329  df-mat 22346  df-mat2pmat 22645  df-decpmat 22701  df-pm2mp 22731
This theorem is referenced by:  pm2mp  22763
  Copyright terms: Public domain W3C validator