MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmat2matmon Structured version   Visualization version   GIF version

Theorem monmat2matmon 22718
Description: The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmat2matmon (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))

Proof of Theorem monmat2matmon
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 crngring 20161 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑁 ∈ Fin)
3 simplr 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑅 ∈ Ring)
4 monmat2matmon.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
6 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
7 monmat2matmon.p . . . . 5 𝑃 = (Poly1𝑅)
8 monmat2matmon.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
9 monmat2matmon.b . . . . 5 𝐵 = (Base‘𝐶)
10 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
11 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
12 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
134, 5, 6, 7, 8, 9, 10, 11, 12mat2pmatscmxcl 22634 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵)
14 monmat2matmon.m1 . . . . 5 = ( ·𝑠𝑄)
15 monmat2matmon.e1 . . . . 5 = (.g‘(mulGrp‘𝑄))
16 monmat2matmon.x . . . . 5 𝑋 = (var1𝐴)
17 monmat2matmon.q . . . . 5 𝑄 = (Poly1𝐴)
18 monmat2matmon.i . . . . 5 𝐼 = (𝑁 pMatToMatPoly 𝑅)
197, 8, 9, 14, 15, 16, 4, 17, 18pm2mpfval 22690 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
202, 3, 13, 19syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
211, 20sylanl2 681 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
22 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
23 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑀𝐾𝐿 ∈ ℕ0))
2423anim1i 615 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
25 df-3an 1088 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0) ↔ ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
2624, 25sylibr 234 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0))
27 eqid 2730 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
287, 8, 4, 5, 27, 11, 12, 10, 6monmatcollpw 22673 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0)) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
2922, 26, 28syl2anc 584 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
3029oveq1d 7405 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)))
311a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑅 ∈ CRing → 𝑅 ∈ Ring))
3231anim2d 612 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)))
3332anim1d 611 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0))))
3433imdistanri 569 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0))
35 ovif 7490 . . . . . . . 8 (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
364matring 22337 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3717ply1sca 22144 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
3836, 37syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
3938ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
4039fveq2d 6865 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4140oveq1d 7405 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
4217ply1lmod 22143 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
4336, 42syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
4443ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
45 eqid 2730 . . . . . . . . . . . . 13 (mulGrp‘𝑄) = (mulGrp‘𝑄)
46 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘𝑄)
4745, 46mgpbas 20061 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘(mulGrp‘𝑄))
4817ply1ring 22139 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
4936, 48syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
5045ringmgp 20155 . . . . . . . . . . . . . 14 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
5149, 50syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
5251ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
53 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5416, 17, 46vr1cl 22109 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝑋 ∈ (Base‘𝑄))
5536, 54syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑄))
5655ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑄))
5747, 15, 52, 53, 56mulgnn0cld 19034 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
58 eqid 2730 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
59 eqid 2730 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
60 eqid 2730 . . . . . . . . . . . 12 (0g𝑄) = (0g𝑄)
6146, 58, 14, 59, 60lmod0vs 20808 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6244, 57, 61syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6341, 62eqtrd 2765 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
6463ifeq2d 4512 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6535, 64eqtrid 2777 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6634, 65syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6730, 66eqtrd 2765 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6867mpteq2dva 5203 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))))
6968oveq2d 7406 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))))
70 ringmnd 20159 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
7149, 70syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
7271adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑄 ∈ Mnd)
73 nn0ex 12455 . . . . . 6 0 ∈ V
7473a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ℕ0 ∈ V)
75 simprr 772 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 ∈ ℕ0)
76 eqid 2730 . . . . 5 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
7738fveq2d 6865 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘(Scalar‘𝑄)))
785, 77eqtrid 2777 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝑄)))
7978eleq2d 2815 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐾𝑀 ∈ (Base‘(Scalar‘𝑄))))
8079biimpcd 249 . . . . . . . . . 10 (𝑀𝐾 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8180adantr 480 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8281impcom 407 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
8382adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
84 eqid 2730 . . . . . . . 8 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
8546, 58, 14, 84lmodvscl 20791 . . . . . . 7 ((𝑄 ∈ LMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8644, 83, 57, 85syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8786ralrimiva 3126 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ∀𝑘 ∈ ℕ0 (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8860, 72, 74, 75, 76, 87gsummpt1n0 19902 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
891, 88sylanl2 681 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
9069, 89eqtrd 2765 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
91 csbov2g 7438 . . . 4 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 𝐿 / 𝑘(𝑘 𝑋)))
92 csbov1g 7437 . . . . . 6 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 / 𝑘𝑘 𝑋))
93 csbvarg 4400 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 / 𝑘𝑘 = 𝐿)
9493oveq1d 7405 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 / 𝑘𝑘 𝑋) = (𝐿 𝑋))
9592, 94eqtrd 2765 . . . . 5 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 𝑋))
9695oveq2d 7406 . . . 4 (𝐿 ∈ ℕ0 → (𝑀 𝐿 / 𝑘(𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9791, 96eqtrd 2765 . . 3 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9897ad2antll 729 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9921, 90, 983eqtrd 2769 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  csb 3865  ifcif 4491  cmpt 5191  cfv 6514  (class class class)co 7390  Fincfn 8921  0cn0 12449  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006  mulGrpcmgp 20056  Ringcrg 20149  CRingccrg 20150  LModclmod 20773  var1cv1 22067  Poly1cpl1 22068   Mat cmat 22301   matToPolyMat cmat2pmat 22598   decompPMat cdecpmat 22656   pMatToMatPoly cpm2mp 22686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-assa 21769  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mamu 22285  df-mat 22302  df-mat2pmat 22601  df-decpmat 22657  df-pm2mp 22687
This theorem is referenced by:  pm2mp  22719
  Copyright terms: Public domain W3C validator