MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monmat2matmon Structured version   Visualization version   GIF version

Theorem monmat2matmon 22727
Description: The transformation of a polynomial matrix having scaled monomials with the same power as entries into a scaled monomial as a polynomial over matrices. (Contributed by AV, 11-Nov-2019.) (Revised by AV, 7-Dec-2019.)
Hypotheses
Ref Expression
monmat2matmon.p 𝑃 = (Poly1𝑅)
monmat2matmon.c 𝐶 = (𝑁 Mat 𝑃)
monmat2matmon.b 𝐵 = (Base‘𝐶)
monmat2matmon.m1 = ( ·𝑠𝑄)
monmat2matmon.e1 = (.g‘(mulGrp‘𝑄))
monmat2matmon.x 𝑋 = (var1𝐴)
monmat2matmon.a 𝐴 = (𝑁 Mat 𝑅)
monmat2matmon.k 𝐾 = (Base‘𝐴)
monmat2matmon.q 𝑄 = (Poly1𝐴)
monmat2matmon.i 𝐼 = (𝑁 pMatToMatPoly 𝑅)
monmat2matmon.e2 𝐸 = (.g‘(mulGrp‘𝑃))
monmat2matmon.y 𝑌 = (var1𝑅)
monmat2matmon.m2 · = ( ·𝑠𝐶)
monmat2matmon.t 𝑇 = (𝑁 matToPolyMat 𝑅)
Assertion
Ref Expression
monmat2matmon (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))

Proof of Theorem monmat2matmon
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 crngring 20148 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑁 ∈ Fin)
3 simplr 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑅 ∈ Ring)
4 monmat2matmon.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 monmat2matmon.k . . . . 5 𝐾 = (Base‘𝐴)
6 monmat2matmon.t . . . . 5 𝑇 = (𝑁 matToPolyMat 𝑅)
7 monmat2matmon.p . . . . 5 𝑃 = (Poly1𝑅)
8 monmat2matmon.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
9 monmat2matmon.b . . . . 5 𝐵 = (Base‘𝐶)
10 monmat2matmon.m2 . . . . 5 · = ( ·𝑠𝐶)
11 monmat2matmon.e2 . . . . 5 𝐸 = (.g‘(mulGrp‘𝑃))
12 monmat2matmon.y . . . . 5 𝑌 = (var1𝑅)
134, 5, 6, 7, 8, 9, 10, 11, 12mat2pmatscmxcl 22643 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵)
14 monmat2matmon.m1 . . . . 5 = ( ·𝑠𝑄)
15 monmat2matmon.e1 . . . . 5 = (.g‘(mulGrp‘𝑄))
16 monmat2matmon.x . . . . 5 𝑋 = (var1𝐴)
17 monmat2matmon.q . . . . 5 𝑄 = (Poly1𝐴)
18 monmat2matmon.i . . . . 5 𝐼 = (𝑁 pMatToMatPoly 𝑅)
197, 8, 9, 14, 15, 16, 4, 17, 18pm2mpfval 22699 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ((𝐿𝐸𝑌) · (𝑇𝑀)) ∈ 𝐵) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
202, 3, 13, 19syl3anc 1373 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
211, 20sylanl2 681 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))))
22 simpll 766 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
23 simpr 484 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑀𝐾𝐿 ∈ ℕ0))
2423anim1i 615 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
25 df-3an 1088 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0) ↔ ((𝑀𝐾𝐿 ∈ ℕ0) ∧ 𝑘 ∈ ℕ0))
2624, 25sylibr 234 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0))
27 eqid 2729 . . . . . . . . 9 (0g𝐴) = (0g𝐴)
287, 8, 4, 5, 27, 11, 12, 10, 6monmatcollpw 22682 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0𝑘 ∈ ℕ0)) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
2922, 26, 28syl2anc 584 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g𝐴)))
3029oveq1d 7368 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)))
311a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑅 ∈ CRing → 𝑅 ∈ Ring))
3231anim2d 612 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)))
3332anim1d 611 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0))))
3433imdistanri 569 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0))
35 ovif 7451 . . . . . . . 8 (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋)))
364matring 22346 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
3717ply1sca 22153 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄))
3836, 37syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄))
3938ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝐴 = (Scalar‘𝑄))
4039fveq2d 6830 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (0g𝐴) = (0g‘(Scalar‘𝑄)))
4140oveq1d 7368 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)))
4217ply1lmod 22152 . . . . . . . . . . . . 13 (𝐴 ∈ Ring → 𝑄 ∈ LMod)
4336, 42syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod)
4443ad2antrr 726 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑄 ∈ LMod)
45 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝑄) = (mulGrp‘𝑄)
46 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑄) = (Base‘𝑄)
4745, 46mgpbas 20048 . . . . . . . . . . . 12 (Base‘𝑄) = (Base‘(mulGrp‘𝑄))
4817ply1ring 22148 . . . . . . . . . . . . . . 15 (𝐴 ∈ Ring → 𝑄 ∈ Ring)
4936, 48syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring)
5045ringmgp 20142 . . . . . . . . . . . . . 14 (𝑄 ∈ Ring → (mulGrp‘𝑄) ∈ Mnd)
5149, 50syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (mulGrp‘𝑄) ∈ Mnd)
5251ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑄) ∈ Mnd)
53 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5416, 17, 46vr1cl 22118 . . . . . . . . . . . . . 14 (𝐴 ∈ Ring → 𝑋 ∈ (Base‘𝑄))
5536, 54syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑄))
5655ad2antrr 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑋 ∈ (Base‘𝑄))
5747, 15, 52, 53, 56mulgnn0cld 18992 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑘 𝑋) ∈ (Base‘𝑄))
58 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑄) = (Scalar‘𝑄)
59 eqid 2729 . . . . . . . . . . . 12 (0g‘(Scalar‘𝑄)) = (0g‘(Scalar‘𝑄))
60 eqid 2729 . . . . . . . . . . . 12 (0g𝑄) = (0g𝑄)
6146, 58, 14, 59, 60lmod0vs 20816 . . . . . . . . . . 11 ((𝑄 ∈ LMod ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6244, 57, 61syl2anc 584 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g‘(Scalar‘𝑄)) (𝑘 𝑋)) = (0g𝑄))
6341, 62eqtrd 2764 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((0g𝐴) (𝑘 𝑋)) = (0g𝑄))
6463ifeq2d 4499 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), ((0g𝐴) (𝑘 𝑋))) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6535, 64eqtrid 2776 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6634, 65syl 17 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (if(𝑘 = 𝐿, 𝑀, (0g𝐴)) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6730, 66eqtrd 2764 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)) = if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
6867mpteq2dva 5188 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))))
6968oveq2d 7369 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))))
70 ringmnd 20146 . . . . . . 7 (𝑄 ∈ Ring → 𝑄 ∈ Mnd)
7149, 70syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd)
7271adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑄 ∈ Mnd)
73 nn0ex 12408 . . . . . 6 0 ∈ V
7473a1i 11 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ℕ0 ∈ V)
75 simprr 772 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 ∈ ℕ0)
76 eqid 2729 . . . . 5 (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))
7738fveq2d 6830 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝐴) = (Base‘(Scalar‘𝑄)))
785, 77eqtrid 2776 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝑄)))
7978eleq2d 2814 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝐾𝑀 ∈ (Base‘(Scalar‘𝑄))))
8079biimpcd 249 . . . . . . . . . 10 (𝑀𝐾 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8180adantr 480 . . . . . . . . 9 ((𝑀𝐾𝐿 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄))))
8281impcom 407 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
8382adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))
84 eqid 2729 . . . . . . . 8 (Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄))
8546, 58, 14, 84lmodvscl 20799 . . . . . . 7 ((𝑄 ∈ LMod ∧ 𝑀 ∈ (Base‘(Scalar‘𝑄)) ∧ (𝑘 𝑋) ∈ (Base‘𝑄)) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8644, 83, 57, 85syl3anc 1373 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0) → (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8786ralrimiva 3121 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → ∀𝑘 ∈ ℕ0 (𝑀 (𝑘 𝑋)) ∈ (Base‘𝑄))
8860, 72, 74, 75, 76, 87gsummpt1n0 19862 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
891, 88sylanl2 681 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 (𝑘 𝑋)), (0g𝑄)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
9069, 89eqtrd 2764 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝑄 Σg (𝑘 ∈ ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇𝑀)) decompPMat 𝑘) (𝑘 𝑋)))) = 𝐿 / 𝑘(𝑀 (𝑘 𝑋)))
91 csbov2g 7401 . . . 4 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 𝐿 / 𝑘(𝑘 𝑋)))
92 csbov1g 7400 . . . . . 6 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 / 𝑘𝑘 𝑋))
93 csbvarg 4387 . . . . . . 7 (𝐿 ∈ ℕ0𝐿 / 𝑘𝑘 = 𝐿)
9493oveq1d 7368 . . . . . 6 (𝐿 ∈ ℕ0 → (𝐿 / 𝑘𝑘 𝑋) = (𝐿 𝑋))
9592, 94eqtrd 2764 . . . . 5 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑘 𝑋) = (𝐿 𝑋))
9695oveq2d 7369 . . . 4 (𝐿 ∈ ℕ0 → (𝑀 𝐿 / 𝑘(𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9791, 96eqtrd 2764 . . 3 (𝐿 ∈ ℕ0𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9897ad2antll 729 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → 𝐿 / 𝑘(𝑀 (𝑘 𝑋)) = (𝑀 (𝐿 𝑋)))
9921, 90, 983eqtrd 2768 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀𝐾𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇𝑀))) = (𝑀 (𝐿 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  csb 3853  ifcif 4478  cmpt 5176  cfv 6486  (class class class)co 7353  Fincfn 8879  0cn0 12402  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  .gcmg 18964  mulGrpcmgp 20043  Ringcrg 20136  CRingccrg 20137  LModclmod 20781  var1cv1 22076  Poly1cpl1 22077   Mat cmat 22310   matToPolyMat cmat2pmat 22607   decompPMat cdecpmat 22665   pMatToMatPoly cpm2mp 22695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-assa 21778  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-vr1 22081  df-ply1 22082  df-coe1 22083  df-mamu 22294  df-mat 22311  df-mat2pmat 22610  df-decpmat 22666  df-pm2mp 22696
This theorem is referenced by:  pm2mp  22728
  Copyright terms: Public domain W3C validator