| Step | Hyp | Ref
| Expression |
| 1 | | crngring 20242 |
. . 3
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 2 | | simpll 767 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → 𝑁 ∈ Fin) |
| 3 | | simplr 769 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → 𝑅 ∈ Ring) |
| 4 | | monmat2matmon.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 5 | | monmat2matmon.k |
. . . . 5
⊢ 𝐾 = (Base‘𝐴) |
| 6 | | monmat2matmon.t |
. . . . 5
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
| 7 | | monmat2matmon.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
| 8 | | monmat2matmon.c |
. . . . 5
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 9 | | monmat2matmon.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
| 10 | | monmat2matmon.m2 |
. . . . 5
⊢ · = (
·𝑠 ‘𝐶) |
| 11 | | monmat2matmon.e2 |
. . . . 5
⊢ 𝐸 =
(.g‘(mulGrp‘𝑃)) |
| 12 | | monmat2matmon.y |
. . . . 5
⊢ 𝑌 = (var1‘𝑅) |
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | mat2pmatscmxcl 22746 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → ((𝐿𝐸𝑌) · (𝑇‘𝑀)) ∈ 𝐵) |
| 14 | | monmat2matmon.m1 |
. . . . 5
⊢ ∗ = (
·𝑠 ‘𝑄) |
| 15 | | monmat2matmon.e1 |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
| 16 | | monmat2matmon.x |
. . . . 5
⊢ 𝑋 = (var1‘𝐴) |
| 17 | | monmat2matmon.q |
. . . . 5
⊢ 𝑄 = (Poly1‘𝐴) |
| 18 | | monmat2matmon.i |
. . . . 5
⊢ 𝐼 = (𝑁 pMatToMatPoly 𝑅) |
| 19 | 7, 8, 9, 14, 15, 16, 4, 17, 18 | pm2mpfval 22802 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ((𝐿𝐸𝑌) · (𝑇‘𝑀)) ∈ 𝐵) → (𝐼‘((𝐿𝐸𝑌) · (𝑇‘𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 20 | 2, 3, 13, 19 | syl3anc 1373 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇‘𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 21 | 1, 20 | sylanl2 681 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇‘𝑀))) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))))) |
| 22 | | simpll 767 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (𝑁 ∈ Fin ∧
𝑅 ∈
CRing)) |
| 23 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝑀 ∈ 𝐾 ∧ 𝐿 ∈
ℕ0)) |
| 24 | 23 | anim1i 615 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 ∈
ℕ0)) |
| 25 | | df-3an 1089 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0)
↔ ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0) ∧ 𝑘 ∈
ℕ0)) |
| 26 | 24, 25 | sylibr 234 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈
ℕ0)) |
| 27 | | eqid 2737 |
. . . . . . . . 9
⊢
(0g‘𝐴) = (0g‘𝐴) |
| 28 | 7, 8, 4, 5, 27, 11, 12, 10, 6 | monmatcollpw 22785 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0))
→ (((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g‘𝐴))) |
| 29 | 22, 26, 28 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) = if(𝑘 = 𝐿, 𝑀, (0g‘𝐴))) |
| 30 | 29 | oveq1d 7446 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = (if(𝑘 = 𝐿, 𝑀, (0g‘𝐴)) ∗ (𝑘 ↑ 𝑋))) |
| 31 | 1 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑅 ∈ CRing
→ 𝑅 ∈
Ring)) |
| 32 | 31 | anim2d 612 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing) →
(𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))) |
| 33 | 32 | anim1d 611 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing) ∧
(𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈
ℕ0)))) |
| 34 | 33 | imdistanri 569 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈
ℕ0)) |
| 35 | | ovif 7531 |
. . . . . . . 8
⊢ (if(𝑘 = 𝐿, 𝑀, (0g‘𝐴)) ∗ (𝑘 ↑ 𝑋)) = if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), ((0g‘𝐴) ∗ (𝑘 ↑ 𝑋))) |
| 36 | 4 | matring 22449 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 37 | 17 | ply1sca 22254 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄)) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄)) |
| 39 | 38 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ 𝐴 =
(Scalar‘𝑄)) |
| 40 | 39 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (0g‘𝐴) = (0g‘(Scalar‘𝑄))) |
| 41 | 40 | oveq1d 7446 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ ((0g‘𝐴) ∗ (𝑘 ↑ 𝑋)) =
((0g‘(Scalar‘𝑄)) ∗ (𝑘 ↑ 𝑋))) |
| 42 | 17 | ply1lmod 22253 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Ring → 𝑄 ∈ LMod) |
| 43 | 36, 42 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ 𝑄 ∈
LMod) |
| 45 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(mulGrp‘𝑄) =
(mulGrp‘𝑄) |
| 46 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑄) =
(Base‘𝑄) |
| 47 | 45, 46 | mgpbas 20142 |
. . . . . . . . . . . 12
⊢
(Base‘𝑄) =
(Base‘(mulGrp‘𝑄)) |
| 48 | 17 | ply1ring 22249 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ Ring → 𝑄 ∈ Ring) |
| 49 | 36, 48 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Ring) |
| 50 | 45 | ringmgp 20236 |
. . . . . . . . . . . . . 14
⊢ (𝑄 ∈ Ring →
(mulGrp‘𝑄) ∈
Mnd) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(mulGrp‘𝑄) ∈
Mnd) |
| 52 | 51 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (mulGrp‘𝑄)
∈ Mnd) |
| 53 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ 𝑘 ∈
ℕ0) |
| 54 | 16, 17, 46 | vr1cl 22219 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Ring → 𝑋 ∈ (Base‘𝑄)) |
| 55 | 36, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑋 ∈ (Base‘𝑄)) |
| 56 | 55 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ 𝑋 ∈
(Base‘𝑄)) |
| 57 | 47, 15, 52, 53, 56 | mulgnn0cld 19113 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (𝑘 ↑ 𝑋) ∈ (Base‘𝑄)) |
| 58 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
| 59 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘(Scalar‘𝑄)) =
(0g‘(Scalar‘𝑄)) |
| 60 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘𝑄) = (0g‘𝑄) |
| 61 | 46, 58, 14, 59, 60 | lmod0vs 20893 |
. . . . . . . . . . 11
⊢ ((𝑄 ∈ LMod ∧ (𝑘 ↑ 𝑋) ∈ (Base‘𝑄)) →
((0g‘(Scalar‘𝑄)) ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑄)) |
| 62 | 44, 57, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ ((0g‘(Scalar‘𝑄)) ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑄)) |
| 63 | 41, 62 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ ((0g‘𝐴) ∗ (𝑘 ↑ 𝑋)) = (0g‘𝑄)) |
| 64 | 63 | ifeq2d 4546 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), ((0g‘𝐴) ∗ (𝑘 ↑ 𝑋))) = if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄))) |
| 65 | 35, 64 | eqtrid 2789 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (if(𝑘 = 𝐿, 𝑀, (0g‘𝐴)) ∗ (𝑘 ↑ 𝑋)) = if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄))) |
| 66 | 34, 65 | syl 17 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (if(𝑘 = 𝐿, 𝑀, (0g‘𝐴)) ∗ (𝑘 ↑ 𝑋)) = if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄))) |
| 67 | 30, 66 | eqtrd 2777 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)) = if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄))) |
| 68 | 67 | mpteq2dva 5242 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝑘 ∈ ℕ0
↦ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄)))) |
| 69 | 68 | oveq2d 7447 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = (𝑄 Σg (𝑘 ∈ ℕ0
↦ if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄))))) |
| 70 | | ringmnd 20240 |
. . . . . . 7
⊢ (𝑄 ∈ Ring → 𝑄 ∈ Mnd) |
| 71 | 49, 70 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ Mnd) |
| 72 | 71 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → 𝑄 ∈ Mnd) |
| 73 | | nn0ex 12532 |
. . . . . 6
⊢
ℕ0 ∈ V |
| 74 | 73 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) →
ℕ0 ∈ V) |
| 75 | | simprr 773 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → 𝐿 ∈
ℕ0) |
| 76 | | eqid 2737 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↦ if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄))) |
| 77 | 38 | fveq2d 6910 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝐴) =
(Base‘(Scalar‘𝑄))) |
| 78 | 5, 77 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 =
(Base‘(Scalar‘𝑄))) |
| 79 | 78 | eleq2d 2827 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝐾 ↔ 𝑀 ∈ (Base‘(Scalar‘𝑄)))) |
| 80 | 79 | biimpcd 249 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐾 → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ (Base‘(Scalar‘𝑄)))) |
| 81 | 80 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0) → ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈
(Base‘(Scalar‘𝑄)))) |
| 82 | 81 | impcom 407 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → 𝑀 ∈
(Base‘(Scalar‘𝑄))) |
| 83 | 82 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ 𝑀 ∈
(Base‘(Scalar‘𝑄))) |
| 84 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑄)) = (Base‘(Scalar‘𝑄)) |
| 85 | 46, 58, 14, 84 | lmodvscl 20876 |
. . . . . . 7
⊢ ((𝑄 ∈ LMod ∧ 𝑀 ∈
(Base‘(Scalar‘𝑄)) ∧ (𝑘 ↑ 𝑋) ∈ (Base‘𝑄)) → (𝑀 ∗ (𝑘 ↑ 𝑋)) ∈ (Base‘𝑄)) |
| 86 | 44, 83, 57, 85 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) ∧ 𝑘 ∈ ℕ0)
→ (𝑀 ∗ (𝑘 ↑ 𝑋)) ∈ (Base‘𝑄)) |
| 87 | 86 | ralrimiva 3146 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) →
∀𝑘 ∈
ℕ0 (𝑀
∗
(𝑘 ↑ 𝑋)) ∈ (Base‘𝑄)) |
| 88 | 60, 72, 74, 75, 76, 87 | gsummpt1n0 19983 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝑄 Σg
(𝑘 ∈
ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄)))) = ⦋𝐿 / 𝑘⦌(𝑀 ∗ (𝑘 ↑ 𝑋))) |
| 89 | 1, 88 | sylanl2 681 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝑄 Σg
(𝑘 ∈
ℕ0 ↦ if(𝑘 = 𝐿, (𝑀 ∗ (𝑘 ↑ 𝑋)), (0g‘𝑄)))) = ⦋𝐿 / 𝑘⦌(𝑀 ∗ (𝑘 ↑ 𝑋))) |
| 90 | 69, 89 | eqtrd 2777 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝑄 Σg
(𝑘 ∈
ℕ0 ↦ ((((𝐿𝐸𝑌) · (𝑇‘𝑀)) decompPMat 𝑘) ∗ (𝑘 ↑ 𝑋)))) = ⦋𝐿 / 𝑘⦌(𝑀 ∗ (𝑘 ↑ 𝑋))) |
| 91 | | csbov2g 7479 |
. . . 4
⊢ (𝐿 ∈ ℕ0
→ ⦋𝐿 /
𝑘⦌(𝑀 ∗ (𝑘 ↑ 𝑋)) = (𝑀 ∗
⦋𝐿 / 𝑘⦌(𝑘 ↑ 𝑋))) |
| 92 | | csbov1g 7478 |
. . . . . 6
⊢ (𝐿 ∈ ℕ0
→ ⦋𝐿 /
𝑘⦌(𝑘 ↑ 𝑋) = (⦋𝐿 / 𝑘⦌𝑘 ↑ 𝑋)) |
| 93 | | csbvarg 4434 |
. . . . . . 7
⊢ (𝐿 ∈ ℕ0
→ ⦋𝐿 /
𝑘⦌𝑘 = 𝐿) |
| 94 | 93 | oveq1d 7446 |
. . . . . 6
⊢ (𝐿 ∈ ℕ0
→ (⦋𝐿 /
𝑘⦌𝑘 ↑ 𝑋) = (𝐿 ↑ 𝑋)) |
| 95 | 92, 94 | eqtrd 2777 |
. . . . 5
⊢ (𝐿 ∈ ℕ0
→ ⦋𝐿 /
𝑘⦌(𝑘 ↑ 𝑋) = (𝐿 ↑ 𝑋)) |
| 96 | 95 | oveq2d 7447 |
. . . 4
⊢ (𝐿 ∈ ℕ0
→ (𝑀 ∗
⦋𝐿 / 𝑘⦌(𝑘 ↑ 𝑋)) = (𝑀 ∗ (𝐿 ↑ 𝑋))) |
| 97 | 91, 96 | eqtrd 2777 |
. . 3
⊢ (𝐿 ∈ ℕ0
→ ⦋𝐿 /
𝑘⦌(𝑀 ∗ (𝑘 ↑ 𝑋)) = (𝑀 ∗ (𝐿 ↑ 𝑋))) |
| 98 | 97 | ad2antll 729 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) →
⦋𝐿 / 𝑘⦌(𝑀 ∗ (𝑘 ↑ 𝑋)) = (𝑀 ∗ (𝐿 ↑ 𝑋))) |
| 99 | 21, 90, 98 | 3eqtrd 2781 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑀 ∈ 𝐾 ∧ 𝐿 ∈ ℕ0)) → (𝐼‘((𝐿𝐸𝑌) · (𝑇‘𝑀))) = (𝑀 ∗ (𝐿 ↑ 𝑋))) |