Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seqpo Structured version   Visualization version   GIF version

Theorem seqpo 34554
Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
seqpo ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Distinct variable groups:   𝑚,𝐹,𝑛,𝑠   𝐴,𝑚,𝑛,𝑠   𝑅,𝑚,𝑛,𝑠

Proof of Theorem seqpo
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6538 . . . . . . . . . 10 (𝑝 = (𝑚 + 1) → (𝐹𝑝) = (𝐹‘(𝑚 + 1)))
21breq2d 4974 . . . . . . . . 9 (𝑝 = (𝑚 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
32imbi2d 342 . . . . . . . 8 (𝑝 = (𝑚 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))))
4 fveq2 6538 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
54breq2d 4974 . . . . . . . . 9 (𝑝 = 𝑞 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑞)))
65imbi2d 342 . . . . . . . 8 (𝑝 = 𝑞 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞))))
7 fveq2 6538 . . . . . . . . . 10 (𝑝 = (𝑞 + 1) → (𝐹𝑝) = (𝐹‘(𝑞 + 1)))
87breq2d 4974 . . . . . . . . 9 (𝑝 = (𝑞 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
98imbi2d 342 . . . . . . . 8 (𝑝 = (𝑞 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
10 fveq2 6538 . . . . . . . . . 10 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
1110breq2d 4974 . . . . . . . . 9 (𝑝 = 𝑛 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑛)))
1211imbi2d 342 . . . . . . . 8 (𝑝 = 𝑛 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛))))
13 fveq2 6538 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹𝑠) = (𝐹𝑚))
14 fvoveq1 7039 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑚 + 1)))
1513, 14breq12d 4975 . . . . . . . . . . 11 (𝑠 = 𝑚 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
1615rspccva 3558 . . . . . . . . . 10 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1716adantl 482 . . . . . . . . 9 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1817a1i 11 . . . . . . . 8 ((𝑚 + 1) ∈ ℤ → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
19 peano2nn 11498 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
20 elnnuz 12131 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℕ ↔ (𝑚 + 1) ∈ (ℤ‘1))
2119, 20sylib 219 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘1))
22 uztrn 12110 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ (ℤ‘1))
23 elnnuz 12131 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ ↔ 𝑞 ∈ (ℤ‘1))
2422, 23sylibr 235 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ ℕ)
2524expcom 414 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘1) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2621, 25syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2726imdistani 569 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ))
28 fveq2 6538 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹𝑠) = (𝐹𝑞))
29 fvoveq1 7039 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑞 + 1)))
3028, 29breq12d 4975 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑞 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
3130rspccva 3558 . . . . . . . . . . . . . . . 16 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3231ad2ant2l 742 . . . . . . . . . . . . . . 15 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3332ex 413 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
34 ffvelrn 6714 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑚 ∈ ℕ) → (𝐹𝑚) ∈ 𝐴)
3534adantrr 713 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑚) ∈ 𝐴)
36 ffvelrn 6714 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹𝑞) ∈ 𝐴)
3736adantrl 712 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞) ∈ 𝐴)
38 peano2nn 11498 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℕ)
39 ffvelrn 6714 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ⟶𝐴 ∧ (𝑞 + 1) ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4038, 39sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4140adantrl 712 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4235, 37, 413jca 1121 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴))
43 potr 5374 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → (((𝐹𝑚)𝑅(𝐹𝑞) ∧ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
4443expcomd 417 . . . . . . . . . . . . . . . . . 18 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
4544ex 413 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4642, 45syl5 34 . . . . . . . . . . . . . . . 16 (𝑅 Po 𝐴 → ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4746expdimp 453 . . . . . . . . . . . . . . 15 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4847adantr 481 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4933, 48mpdd 43 . . . . . . . . . . . . 13 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5027, 49syl5 34 . . . . . . . . . . . 12 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5150expdimp 453 . . . . . . . . . . 11 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5251anasss 467 . . . . . . . . . 10 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5352com12 32 . . . . . . . . 9 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5453a2d 29 . . . . . . . 8 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
553, 6, 9, 12, 18, 54uzind4 12155 . . . . . . 7 (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5655com12 32 . . . . . 6 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5756ralrimiv 3148 . . . . 5 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5857anassrs 468 . . . 4 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5958ralrimiva 3149 . . 3 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
6059ex 413 . 2 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
61 fvoveq1 7039 . . . . . . 7 (𝑚 = 𝑠 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑠 + 1)))
62 fveq2 6538 . . . . . . . 8 (𝑚 = 𝑠 → (𝐹𝑚) = (𝐹𝑠))
6362breq1d 4972 . . . . . . 7 (𝑚 = 𝑠 → ((𝐹𝑚)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹𝑛)))
6461, 63raleqbidv 3361 . . . . . 6 (𝑚 = 𝑠 → (∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ↔ ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6564rspcv 3555 . . . . 5 (𝑠 ∈ ℕ → (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6665imdistanri 570 . . . 4 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ))
67 peano2nn 11498 . . . . . . 7 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6867nnzd 11935 . . . . . 6 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
69 uzid 12108 . . . . . 6 ((𝑠 + 1) ∈ ℤ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
7068, 69syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
71 fveq2 6538 . . . . . . 7 (𝑛 = (𝑠 + 1) → (𝐹𝑛) = (𝐹‘(𝑠 + 1)))
7271breq2d 4974 . . . . . 6 (𝑛 = (𝑠 + 1) → ((𝐹𝑠)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))))
7372rspccva 3558 . . . . 5 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1))) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7470, 73sylan2 592 . . . 4 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7566, 74syl 17 . . 3 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7675ralrimiva 3149 . 2 (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7760, 76impbid1 226 1 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  wral 3105   class class class wbr 4962   Po wpo 5360  wf 6221  cfv 6225  (class class class)co 7016  1c1 10384   + caddc 10386  cn 11486  cz 11829  cuz 12093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094
This theorem is referenced by:  incsequz2  34556
  Copyright terms: Public domain W3C validator