Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seqpo Structured version   Visualization version   GIF version

Theorem seqpo 33854
Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
seqpo ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Distinct variable groups:   𝑚,𝐹,𝑛,𝑠   𝐴,𝑚,𝑛,𝑠   𝑅,𝑚,𝑛,𝑠

Proof of Theorem seqpo
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6408 . . . . . . . . . 10 (𝑝 = (𝑚 + 1) → (𝐹𝑝) = (𝐹‘(𝑚 + 1)))
21breq2d 4856 . . . . . . . . 9 (𝑝 = (𝑚 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
32imbi2d 331 . . . . . . . 8 (𝑝 = (𝑚 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))))
4 fveq2 6408 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
54breq2d 4856 . . . . . . . . 9 (𝑝 = 𝑞 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑞)))
65imbi2d 331 . . . . . . . 8 (𝑝 = 𝑞 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞))))
7 fveq2 6408 . . . . . . . . . 10 (𝑝 = (𝑞 + 1) → (𝐹𝑝) = (𝐹‘(𝑞 + 1)))
87breq2d 4856 . . . . . . . . 9 (𝑝 = (𝑞 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
98imbi2d 331 . . . . . . . 8 (𝑝 = (𝑞 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
10 fveq2 6408 . . . . . . . . . 10 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
1110breq2d 4856 . . . . . . . . 9 (𝑝 = 𝑛 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑛)))
1211imbi2d 331 . . . . . . . 8 (𝑝 = 𝑛 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛))))
13 fveq2 6408 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹𝑠) = (𝐹𝑚))
14 fvoveq1 6897 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑚 + 1)))
1513, 14breq12d 4857 . . . . . . . . . . 11 (𝑠 = 𝑚 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
1615rspccva 3501 . . . . . . . . . 10 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1716adantl 469 . . . . . . . . 9 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1817a1i 11 . . . . . . . 8 ((𝑚 + 1) ∈ ℤ → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
19 peano2nn 11317 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
20 elnnuz 11942 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℕ ↔ (𝑚 + 1) ∈ (ℤ‘1))
2119, 20sylib 209 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘1))
22 uztrn 11921 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ (ℤ‘1))
23 elnnuz 11942 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ ↔ 𝑞 ∈ (ℤ‘1))
2422, 23sylibr 225 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ ℕ)
2524expcom 400 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘1) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2621, 25syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2726imdistani 560 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ))
28 fveq2 6408 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹𝑠) = (𝐹𝑞))
29 fvoveq1 6897 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑞 + 1)))
3028, 29breq12d 4857 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑞 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
3130rspccva 3501 . . . . . . . . . . . . . . . 16 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3231ad2ant2l 743 . . . . . . . . . . . . . . 15 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3332ex 399 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
34 ffvelrn 6579 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑚 ∈ ℕ) → (𝐹𝑚) ∈ 𝐴)
3534adantrr 699 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑚) ∈ 𝐴)
36 ffvelrn 6579 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹𝑞) ∈ 𝐴)
3736adantrl 698 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞) ∈ 𝐴)
38 peano2nn 11317 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℕ)
39 ffvelrn 6579 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ⟶𝐴 ∧ (𝑞 + 1) ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4038, 39sylan2 582 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4140adantrl 698 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4235, 37, 413jca 1151 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴))
43 potr 5244 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → (((𝐹𝑚)𝑅(𝐹𝑞) ∧ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
4443expcomd 404 . . . . . . . . . . . . . . . . . 18 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
4544ex 399 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4642, 45syl5 34 . . . . . . . . . . . . . . . 16 (𝑅 Po 𝐴 → ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4746expdimp 442 . . . . . . . . . . . . . . 15 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4847adantr 468 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4933, 48mpdd 43 . . . . . . . . . . . . 13 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5027, 49syl5 34 . . . . . . . . . . . 12 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5150expdimp 442 . . . . . . . . . . 11 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5251anasss 454 . . . . . . . . . 10 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5352com12 32 . . . . . . . . 9 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5453a2d 29 . . . . . . . 8 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
553, 6, 9, 12, 18, 54uzind4 11964 . . . . . . 7 (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5655com12 32 . . . . . 6 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5756ralrimiv 3153 . . . . 5 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5857anassrs 455 . . . 4 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5958ralrimiva 3154 . . 3 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
6059ex 399 . 2 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
61 fvoveq1 6897 . . . . . . 7 (𝑚 = 𝑠 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑠 + 1)))
62 fveq2 6408 . . . . . . . 8 (𝑚 = 𝑠 → (𝐹𝑚) = (𝐹𝑠))
6362breq1d 4854 . . . . . . 7 (𝑚 = 𝑠 → ((𝐹𝑚)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹𝑛)))
6461, 63raleqbidv 3341 . . . . . 6 (𝑚 = 𝑠 → (∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ↔ ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6564rspcv 3498 . . . . 5 (𝑠 ∈ ℕ → (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6665imdistanri 561 . . . 4 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ))
67 peano2nn 11317 . . . . . . 7 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6867nnzd 11747 . . . . . 6 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
69 uzid 11919 . . . . . 6 ((𝑠 + 1) ∈ ℤ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
7068, 69syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
71 fveq2 6408 . . . . . . 7 (𝑛 = (𝑠 + 1) → (𝐹𝑛) = (𝐹‘(𝑠 + 1)))
7271breq2d 4856 . . . . . 6 (𝑛 = (𝑠 + 1) → ((𝐹𝑠)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))))
7372rspccva 3501 . . . . 5 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1))) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7470, 73sylan2 582 . . . 4 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7566, 74syl 17 . . 3 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7675ralrimiva 3154 . 2 (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7760, 76impbid1 216 1 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wral 3096   class class class wbr 4844   Po wpo 5230  wf 6097  cfv 6101  (class class class)co 6874  1c1 10222   + caddc 10224  cn 11305  cz 11643  cuz 11904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-n0 11560  df-z 11644  df-uz 11905
This theorem is referenced by:  incsequz2  33856
  Copyright terms: Public domain W3C validator