Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seqpo Structured version   Visualization version   GIF version

Theorem seqpo 36256
Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
seqpo ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Distinct variable groups:   𝑚,𝐹,𝑛,𝑠   𝐴,𝑚,𝑛,𝑠   𝑅,𝑚,𝑛,𝑠

Proof of Theorem seqpo
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . . . . . . . 10 (𝑝 = (𝑚 + 1) → (𝐹𝑝) = (𝐹‘(𝑚 + 1)))
21breq2d 5121 . . . . . . . . 9 (𝑝 = (𝑚 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
32imbi2d 341 . . . . . . . 8 (𝑝 = (𝑚 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))))
4 fveq2 6846 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
54breq2d 5121 . . . . . . . . 9 (𝑝 = 𝑞 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑞)))
65imbi2d 341 . . . . . . . 8 (𝑝 = 𝑞 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞))))
7 fveq2 6846 . . . . . . . . . 10 (𝑝 = (𝑞 + 1) → (𝐹𝑝) = (𝐹‘(𝑞 + 1)))
87breq2d 5121 . . . . . . . . 9 (𝑝 = (𝑞 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
98imbi2d 341 . . . . . . . 8 (𝑝 = (𝑞 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
10 fveq2 6846 . . . . . . . . . 10 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
1110breq2d 5121 . . . . . . . . 9 (𝑝 = 𝑛 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑛)))
1211imbi2d 341 . . . . . . . 8 (𝑝 = 𝑛 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛))))
13 fveq2 6846 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹𝑠) = (𝐹𝑚))
14 fvoveq1 7384 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑚 + 1)))
1513, 14breq12d 5122 . . . . . . . . . . 11 (𝑠 = 𝑚 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
1615rspccva 3582 . . . . . . . . . 10 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1716adantl 483 . . . . . . . . 9 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1817a1i 11 . . . . . . . 8 ((𝑚 + 1) ∈ ℤ → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
19 peano2nn 12173 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
20 elnnuz 12815 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℕ ↔ (𝑚 + 1) ∈ (ℤ‘1))
2119, 20sylib 217 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘1))
22 uztrn 12789 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ (ℤ‘1))
23 elnnuz 12815 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ ↔ 𝑞 ∈ (ℤ‘1))
2422, 23sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ ℕ)
2524expcom 415 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘1) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2621, 25syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2726imdistani 570 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ))
28 fveq2 6846 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹𝑠) = (𝐹𝑞))
29 fvoveq1 7384 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑞 + 1)))
3028, 29breq12d 5122 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑞 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
3130rspccva 3582 . . . . . . . . . . . . . . . 16 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3231ad2ant2l 745 . . . . . . . . . . . . . . 15 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3332ex 414 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
34 ffvelcdm 7036 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑚 ∈ ℕ) → (𝐹𝑚) ∈ 𝐴)
3534adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑚) ∈ 𝐴)
36 ffvelcdm 7036 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹𝑞) ∈ 𝐴)
3736adantrl 715 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞) ∈ 𝐴)
38 peano2nn 12173 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℕ)
39 ffvelcdm 7036 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ⟶𝐴 ∧ (𝑞 + 1) ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4038, 39sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4140adantrl 715 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4235, 37, 413jca 1129 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴))
43 potr 5562 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → (((𝐹𝑚)𝑅(𝐹𝑞) ∧ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
4443expcomd 418 . . . . . . . . . . . . . . . . . 18 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
4544ex 414 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4642, 45syl5 34 . . . . . . . . . . . . . . . 16 (𝑅 Po 𝐴 → ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4746expdimp 454 . . . . . . . . . . . . . . 15 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4847adantr 482 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4933, 48mpdd 43 . . . . . . . . . . . . 13 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5027, 49syl5 34 . . . . . . . . . . . 12 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5150expdimp 454 . . . . . . . . . . 11 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5251anasss 468 . . . . . . . . . 10 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5352com12 32 . . . . . . . . 9 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5453a2d 29 . . . . . . . 8 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
553, 6, 9, 12, 18, 54uzind4 12839 . . . . . . 7 (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5655com12 32 . . . . . 6 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5756ralrimiv 3139 . . . . 5 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5857anassrs 469 . . . 4 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5958ralrimiva 3140 . . 3 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
6059ex 414 . 2 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
61 fvoveq1 7384 . . . . . . 7 (𝑚 = 𝑠 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑠 + 1)))
62 fveq2 6846 . . . . . . . 8 (𝑚 = 𝑠 → (𝐹𝑚) = (𝐹𝑠))
6362breq1d 5119 . . . . . . 7 (𝑚 = 𝑠 → ((𝐹𝑚)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹𝑛)))
6461, 63raleqbidv 3318 . . . . . 6 (𝑚 = 𝑠 → (∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ↔ ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6564rspcv 3579 . . . . 5 (𝑠 ∈ ℕ → (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6665imdistanri 571 . . . 4 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ))
67 peano2nn 12173 . . . . . . 7 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6867nnzd 12534 . . . . . 6 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
69 uzid 12786 . . . . . 6 ((𝑠 + 1) ∈ ℤ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
7068, 69syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
71 fveq2 6846 . . . . . . 7 (𝑛 = (𝑠 + 1) → (𝐹𝑛) = (𝐹‘(𝑠 + 1)))
7271breq2d 5121 . . . . . 6 (𝑛 = (𝑠 + 1) → ((𝐹𝑠)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))))
7372rspccva 3582 . . . . 5 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1))) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7470, 73sylan2 594 . . . 4 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7566, 74syl 17 . . 3 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7675ralrimiva 3140 . 2 (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7760, 76impbid1 224 1 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061   class class class wbr 5109   Po wpo 5547  wf 6496  cfv 6500  (class class class)co 7361  1c1 11060   + caddc 11062  cn 12161  cz 12507  cuz 12771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772
This theorem is referenced by:  incsequz2  36258
  Copyright terms: Public domain W3C validator