Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seqpo Structured version   Visualization version   GIF version

Theorem seqpo 35832
Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
seqpo ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Distinct variable groups:   𝑚,𝐹,𝑛,𝑠   𝐴,𝑚,𝑛,𝑠   𝑅,𝑚,𝑛,𝑠

Proof of Theorem seqpo
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . . . . 10 (𝑝 = (𝑚 + 1) → (𝐹𝑝) = (𝐹‘(𝑚 + 1)))
21breq2d 5082 . . . . . . . . 9 (𝑝 = (𝑚 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
32imbi2d 340 . . . . . . . 8 (𝑝 = (𝑚 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))))
4 fveq2 6756 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
54breq2d 5082 . . . . . . . . 9 (𝑝 = 𝑞 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑞)))
65imbi2d 340 . . . . . . . 8 (𝑝 = 𝑞 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞))))
7 fveq2 6756 . . . . . . . . . 10 (𝑝 = (𝑞 + 1) → (𝐹𝑝) = (𝐹‘(𝑞 + 1)))
87breq2d 5082 . . . . . . . . 9 (𝑝 = (𝑞 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
98imbi2d 340 . . . . . . . 8 (𝑝 = (𝑞 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
10 fveq2 6756 . . . . . . . . . 10 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
1110breq2d 5082 . . . . . . . . 9 (𝑝 = 𝑛 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑛)))
1211imbi2d 340 . . . . . . . 8 (𝑝 = 𝑛 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛))))
13 fveq2 6756 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹𝑠) = (𝐹𝑚))
14 fvoveq1 7278 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑚 + 1)))
1513, 14breq12d 5083 . . . . . . . . . . 11 (𝑠 = 𝑚 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
1615rspccva 3551 . . . . . . . . . 10 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1716adantl 481 . . . . . . . . 9 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1817a1i 11 . . . . . . . 8 ((𝑚 + 1) ∈ ℤ → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
19 peano2nn 11915 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
20 elnnuz 12551 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℕ ↔ (𝑚 + 1) ∈ (ℤ‘1))
2119, 20sylib 217 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘1))
22 uztrn 12529 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ (ℤ‘1))
23 elnnuz 12551 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ ↔ 𝑞 ∈ (ℤ‘1))
2422, 23sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ ℕ)
2524expcom 413 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘1) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2621, 25syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2726imdistani 568 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ))
28 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹𝑠) = (𝐹𝑞))
29 fvoveq1 7278 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑞 + 1)))
3028, 29breq12d 5083 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑞 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
3130rspccva 3551 . . . . . . . . . . . . . . . 16 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3231ad2ant2l 742 . . . . . . . . . . . . . . 15 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3332ex 412 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
34 ffvelrn 6941 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑚 ∈ ℕ) → (𝐹𝑚) ∈ 𝐴)
3534adantrr 713 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑚) ∈ 𝐴)
36 ffvelrn 6941 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹𝑞) ∈ 𝐴)
3736adantrl 712 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞) ∈ 𝐴)
38 peano2nn 11915 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℕ)
39 ffvelrn 6941 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ⟶𝐴 ∧ (𝑞 + 1) ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4038, 39sylan2 592 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4140adantrl 712 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4235, 37, 413jca 1126 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴))
43 potr 5507 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → (((𝐹𝑚)𝑅(𝐹𝑞) ∧ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
4443expcomd 416 . . . . . . . . . . . . . . . . . 18 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
4544ex 412 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4642, 45syl5 34 . . . . . . . . . . . . . . . 16 (𝑅 Po 𝐴 → ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4746expdimp 452 . . . . . . . . . . . . . . 15 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4847adantr 480 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4933, 48mpdd 43 . . . . . . . . . . . . 13 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5027, 49syl5 34 . . . . . . . . . . . 12 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5150expdimp 452 . . . . . . . . . . 11 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5251anasss 466 . . . . . . . . . 10 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5352com12 32 . . . . . . . . 9 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5453a2d 29 . . . . . . . 8 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
553, 6, 9, 12, 18, 54uzind4 12575 . . . . . . 7 (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5655com12 32 . . . . . 6 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5756ralrimiv 3106 . . . . 5 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5857anassrs 467 . . . 4 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5958ralrimiva 3107 . . 3 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
6059ex 412 . 2 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
61 fvoveq1 7278 . . . . . . 7 (𝑚 = 𝑠 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑠 + 1)))
62 fveq2 6756 . . . . . . . 8 (𝑚 = 𝑠 → (𝐹𝑚) = (𝐹𝑠))
6362breq1d 5080 . . . . . . 7 (𝑚 = 𝑠 → ((𝐹𝑚)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹𝑛)))
6461, 63raleqbidv 3327 . . . . . 6 (𝑚 = 𝑠 → (∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ↔ ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6564rspcv 3547 . . . . 5 (𝑠 ∈ ℕ → (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6665imdistanri 569 . . . 4 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ))
67 peano2nn 11915 . . . . . . 7 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6867nnzd 12354 . . . . . 6 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
69 uzid 12526 . . . . . 6 ((𝑠 + 1) ∈ ℤ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
7068, 69syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
71 fveq2 6756 . . . . . . 7 (𝑛 = (𝑠 + 1) → (𝐹𝑛) = (𝐹‘(𝑠 + 1)))
7271breq2d 5082 . . . . . 6 (𝑛 = (𝑠 + 1) → ((𝐹𝑠)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))))
7372rspccva 3551 . . . . 5 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1))) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7470, 73sylan2 592 . . . 4 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7566, 74syl 17 . . 3 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7675ralrimiva 3107 . 2 (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7760, 76impbid1 224 1 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070   Po wpo 5492  wf 6414  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cn 11903  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  incsequz2  35834
  Copyright terms: Public domain W3C validator