Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seqpo Structured version   Visualization version   GIF version

Theorem seqpo 35024
Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
seqpo ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Distinct variable groups:   𝑚,𝐹,𝑛,𝑠   𝐴,𝑚,𝑛,𝑠   𝑅,𝑚,𝑛,𝑠

Proof of Theorem seqpo
Dummy variables 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6672 . . . . . . . . . 10 (𝑝 = (𝑚 + 1) → (𝐹𝑝) = (𝐹‘(𝑚 + 1)))
21breq2d 5080 . . . . . . . . 9 (𝑝 = (𝑚 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
32imbi2d 343 . . . . . . . 8 (𝑝 = (𝑚 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))))
4 fveq2 6672 . . . . . . . . . 10 (𝑝 = 𝑞 → (𝐹𝑝) = (𝐹𝑞))
54breq2d 5080 . . . . . . . . 9 (𝑝 = 𝑞 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑞)))
65imbi2d 343 . . . . . . . 8 (𝑝 = 𝑞 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞))))
7 fveq2 6672 . . . . . . . . . 10 (𝑝 = (𝑞 + 1) → (𝐹𝑝) = (𝐹‘(𝑞 + 1)))
87breq2d 5080 . . . . . . . . 9 (𝑝 = (𝑞 + 1) → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
98imbi2d 343 . . . . . . . 8 (𝑝 = (𝑞 + 1) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
10 fveq2 6672 . . . . . . . . . 10 (𝑝 = 𝑛 → (𝐹𝑝) = (𝐹𝑛))
1110breq2d 5080 . . . . . . . . 9 (𝑝 = 𝑛 → ((𝐹𝑚)𝑅(𝐹𝑝) ↔ (𝐹𝑚)𝑅(𝐹𝑛)))
1211imbi2d 343 . . . . . . . 8 (𝑝 = 𝑛 → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑝)) ↔ (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛))))
13 fveq2 6672 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹𝑠) = (𝐹𝑚))
14 fvoveq1 7181 . . . . . . . . . . . 12 (𝑠 = 𝑚 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑚 + 1)))
1513, 14breq12d 5081 . . . . . . . . . . 11 (𝑠 = 𝑚 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
1615rspccva 3624 . . . . . . . . . 10 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1716adantl 484 . . . . . . . . 9 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1)))
1817a1i 11 . . . . . . . 8 ((𝑚 + 1) ∈ ℤ → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑚 + 1))))
19 peano2nn 11652 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
20 elnnuz 12285 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℕ ↔ (𝑚 + 1) ∈ (ℤ‘1))
2119, 20sylib 220 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ (ℤ‘1))
22 uztrn 12264 . . . . . . . . . . . . . . . . 17 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ (ℤ‘1))
23 elnnuz 12285 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ ↔ 𝑞 ∈ (ℤ‘1))
2422, 23sylibr 236 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ (ℤ‘(𝑚 + 1)) ∧ (𝑚 + 1) ∈ (ℤ‘1)) → 𝑞 ∈ ℕ)
2524expcom 416 . . . . . . . . . . . . . . 15 ((𝑚 + 1) ∈ (ℤ‘1) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2621, 25syl 17 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → 𝑞 ∈ ℕ))
2726imdistani 571 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ))
28 fveq2 6672 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹𝑠) = (𝐹𝑞))
29 fvoveq1 7181 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑞 → (𝐹‘(𝑠 + 1)) = (𝐹‘(𝑞 + 1)))
3028, 29breq12d 5081 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑞 → ((𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
3130rspccva 3624 . . . . . . . . . . . . . . . 16 ((∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3231ad2ant2l 744 . . . . . . . . . . . . . . 15 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)))
3332ex 415 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))))
34 ffvelrn 6851 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑚 ∈ ℕ) → (𝐹𝑚) ∈ 𝐴)
3534adantrr 715 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑚) ∈ 𝐴)
36 ffvelrn 6851 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹𝑞) ∈ 𝐴)
3736adantrl 714 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹𝑞) ∈ 𝐴)
38 peano2nn 11652 . . . . . . . . . . . . . . . . . . . 20 (𝑞 ∈ ℕ → (𝑞 + 1) ∈ ℕ)
39 ffvelrn 6851 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ⟶𝐴 ∧ (𝑞 + 1) ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4038, 39sylan2 594 . . . . . . . . . . . . . . . . . . 19 ((𝐹:ℕ⟶𝐴𝑞 ∈ ℕ) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4140adantrl 714 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → (𝐹‘(𝑞 + 1)) ∈ 𝐴)
4235, 37, 413jca 1124 . . . . . . . . . . . . . . . . 17 ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴))
43 potr 5488 . . . . . . . . . . . . . . . . . . 19 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → (((𝐹𝑚)𝑅(𝐹𝑞) ∧ (𝐹𝑞)𝑅(𝐹‘(𝑞 + 1))) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))
4443expcomd 419 . . . . . . . . . . . . . . . . . 18 ((𝑅 Po 𝐴 ∧ ((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
4544ex 415 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (((𝐹𝑚) ∈ 𝐴 ∧ (𝐹𝑞) ∈ 𝐴 ∧ (𝐹‘(𝑞 + 1)) ∈ 𝐴) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4642, 45syl5 34 . . . . . . . . . . . . . . . 16 (𝑅 Po 𝐴 → ((𝐹:ℕ⟶𝐴 ∧ (𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ)) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4746expdimp 455 . . . . . . . . . . . . . . 15 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4847adantr 483 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑞)𝑅(𝐹‘(𝑞 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1))))))
4933, 48mpdd 43 . . . . . . . . . . . . 13 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ ℕ) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5027, 49syl5 34 . . . . . . . . . . . 12 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ((𝑚 ∈ ℕ ∧ 𝑞 ∈ (ℤ‘(𝑚 + 1))) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5150expdimp 455 . . . . . . . . . . 11 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5251anasss 469 . . . . . . . . . 10 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5352com12 32 . . . . . . . . 9 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ((𝐹𝑚)𝑅(𝐹𝑞) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
5453a2d 29 . . . . . . . 8 (𝑞 ∈ (ℤ‘(𝑚 + 1)) → ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑞)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹‘(𝑞 + 1)))))
553, 6, 9, 12, 18, 54uzind4 12309 . . . . . . 7 (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5655com12 32 . . . . . 6 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → (𝑛 ∈ (ℤ‘(𝑚 + 1)) → (𝐹𝑚)𝑅(𝐹𝑛)))
5756ralrimiv 3183 . . . . 5 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ∧ 𝑚 ∈ ℕ)) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5857anassrs 470 . . . 4 ((((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) ∧ 𝑚 ∈ ℕ) → ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
5958ralrimiva 3184 . . 3 (((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) ∧ ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛))
6059ex 415 . 2 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) → ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
61 fvoveq1 7181 . . . . . . 7 (𝑚 = 𝑠 → (ℤ‘(𝑚 + 1)) = (ℤ‘(𝑠 + 1)))
62 fveq2 6672 . . . . . . . 8 (𝑚 = 𝑠 → (𝐹𝑚) = (𝐹𝑠))
6362breq1d 5078 . . . . . . 7 (𝑚 = 𝑠 → ((𝐹𝑚)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹𝑛)))
6461, 63raleqbidv 3403 . . . . . 6 (𝑚 = 𝑠 → (∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ↔ ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6564rspcv 3620 . . . . 5 (𝑠 ∈ ℕ → (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛)))
6665imdistanri 572 . . . 4 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ))
67 peano2nn 11652 . . . . . . 7 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℕ)
6867nnzd 12089 . . . . . 6 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ ℤ)
69 uzid 12261 . . . . . 6 ((𝑠 + 1) ∈ ℤ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
7068, 69syl 17 . . . . 5 (𝑠 ∈ ℕ → (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1)))
71 fveq2 6672 . . . . . . 7 (𝑛 = (𝑠 + 1) → (𝐹𝑛) = (𝐹‘(𝑠 + 1)))
7271breq2d 5080 . . . . . 6 (𝑛 = (𝑠 + 1) → ((𝐹𝑠)𝑅(𝐹𝑛) ↔ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1))))
7372rspccva 3624 . . . . 5 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ (𝑠 + 1) ∈ (ℤ‘(𝑠 + 1))) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7470, 73sylan2 594 . . . 4 ((∀𝑛 ∈ (ℤ‘(𝑠 + 1))(𝐹𝑠)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7566, 74syl 17 . . 3 ((∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) ∧ 𝑠 ∈ ℕ) → (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7675ralrimiva 3184 . 2 (∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛) → ∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)))
7760, 76impbid1 227 1 ((𝑅 Po 𝐴𝐹:ℕ⟶𝐴) → (∀𝑠 ∈ ℕ (𝐹𝑠)𝑅(𝐹‘(𝑠 + 1)) ↔ ∀𝑚 ∈ ℕ ∀𝑛 ∈ (ℤ‘(𝑚 + 1))(𝐹𝑚)𝑅(𝐹𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140   class class class wbr 5068   Po wpo 5474  wf 6353  cfv 6357  (class class class)co 7158  1c1 10540   + caddc 10542  cn 11640  cz 11984  cuz 12246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247
This theorem is referenced by:  incsequz2  35026
  Copyright terms: Public domain W3C validator