MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impcon4bid Structured version   Visualization version   GIF version

Theorem impcon4bid 227
Description: A variation on impbid 212 with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009.)
Hypotheses
Ref Expression
impcon4bid.1 (𝜑 → (𝜓𝜒))
impcon4bid.2 (𝜑 → (¬ 𝜓 → ¬ 𝜒))
Assertion
Ref Expression
impcon4bid (𝜑 → (𝜓𝜒))

Proof of Theorem impcon4bid
StepHypRef Expression
1 impcon4bid.1 . 2 (𝜑 → (𝜓𝜒))
2 impcon4bid.2 . . 3 (𝜑 → (¬ 𝜓 → ¬ 𝜒))
32con4d 115 . 2 (𝜑 → (𝜒𝜓))
41, 3impbid 212 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  con4bid  317  soisoi  7306  isomin  7315  naddel1  8654  alephdom  10041  nn0n0n1ge2b  12518  om2uzlt2i  13923  sadcaddlem  16434  isprm5  16684  pcdvdsb  16847  om2noseqlt2  28201  expgt0b  32748  oexpreposd  42317  tfsconcatb0  43340  cvgdvgrat  44309
  Copyright terms: Public domain W3C validator