MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impcon4bid Structured version   Visualization version   GIF version

Theorem impcon4bid 227
Description: A variation on impbid 212 with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009.)
Hypotheses
Ref Expression
impcon4bid.1 (𝜑 → (𝜓𝜒))
impcon4bid.2 (𝜑 → (¬ 𝜓 → ¬ 𝜒))
Assertion
Ref Expression
impcon4bid (𝜑 → (𝜓𝜒))

Proof of Theorem impcon4bid
StepHypRef Expression
1 impcon4bid.1 . 2 (𝜑 → (𝜓𝜒))
2 impcon4bid.2 . . 3 (𝜑 → (¬ 𝜓 → ¬ 𝜒))
32con4d 115 . 2 (𝜑 → (𝜒𝜓))
41, 3impbid 212 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  con4bid  317  soisoi  7364  isomin  7373  naddel1  8743  alephdom  10150  nn0n0n1ge2b  12621  om2uzlt2i  14002  sadcaddlem  16503  isprm5  16754  pcdvdsb  16916  om2noseqlt2  28324  expgt0b  32820  oexpreposd  42309  tfsconcatb0  43306  cvgdvgrat  44282
  Copyright terms: Public domain W3C validator