MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impcon4bid Structured version   Visualization version   GIF version

Theorem impcon4bid 219
Description: A variation on impbid 204 with contraposition. (Contributed by Jeff Hankins, 3-Jul-2009.)
Hypotheses
Ref Expression
impcon4bid.1 (𝜑 → (𝜓𝜒))
impcon4bid.2 (𝜑 → (¬ 𝜓 → ¬ 𝜒))
Assertion
Ref Expression
impcon4bid (𝜑 → (𝜓𝜒))

Proof of Theorem impcon4bid
StepHypRef Expression
1 impcon4bid.1 . 2 (𝜑 → (𝜓𝜒))
2 impcon4bid.2 . . 3 (𝜑 → (¬ 𝜓 → ¬ 𝜒))
32con4d 115 . 2 (𝜑 → (𝜒𝜓))
41, 3impbid 204 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199
This theorem is referenced by:  con4bid  309  soisoi  6806  isomin  6815  alephdom  9190  nn0n0n1ge2b  11648  om2uzlt2i  13005  sadcaddlem  15514  isprm5  15752  pcdvdsb  15906  cvgdvgrat  39290
  Copyright terms: Public domain W3C validator