| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzlt2i | Structured version Visualization version GIF version | ||
| Description: The mapping 𝐺 (see om2uz0i 13872) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzlt2i | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 1, 2 | om2uzlti 13875 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 4 | 1, 2 | om2uzlti 13875 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
| 5 | fveq2 6826 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴)) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴))) |
| 7 | 4, 6 | orim12d 966 | . . . 4 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
| 9 | nnon 7812 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
| 10 | nnon 7812 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 11 | onsseleq 6352 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
| 12 | ontri1 6345 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 13 | 11, 12 | bitr3d 281 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 14 | 9, 10, 13 | syl2anr 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 15 | 1, 2 | om2uzuzi 13874 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ (ℤ≥‘𝐶)) |
| 16 | eluzelre 12764 | . . . . 5 ⊢ ((𝐺‘𝐵) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐵) ∈ ℝ) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ ℝ) |
| 18 | 1, 2 | om2uzuzi 13874 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
| 19 | eluzelre 12764 | . . . . 5 ⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℝ) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℝ) |
| 21 | leloe 11220 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) | |
| 22 | lenlt 11212 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) | |
| 23 | 21, 22 | bitr3d 281 | . . . 4 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 24 | 17, 20, 23 | syl2anr 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 25 | 8, 14, 24 | 3imtr3d 293 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 26 | 3, 25 | impcon4bid 227 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 ↦ cmpt 5176 ↾ cres 5625 Oncon0 6311 ‘cfv 6486 (class class class)co 7353 ωcom 7806 reccrdg 8338 ℝcr 11027 1c1 11029 + caddc 11031 < clt 11168 ≤ cle 11169 ℤcz 12489 ℤ≥cuz 12753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 |
| This theorem is referenced by: om2uzisoi 13879 unbenlem 16838 |
| Copyright terms: Public domain | W3C validator |