Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om2uzlt2i | Structured version Visualization version GIF version |
Description: The mapping 𝐺 (see om2uz0i 13667) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
Ref | Expression |
---|---|
om2uzlt2i | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 1, 2 | om2uzlti 13670 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
4 | 1, 2 | om2uzlti 13670 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
5 | fveq2 6774 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴)) | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴))) |
7 | 4, 6 | orim12d 962 | . . . 4 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
8 | 7 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
9 | nnon 7718 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
10 | nnon 7718 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
11 | onsseleq 6307 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
12 | ontri1 6300 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
13 | 11, 12 | bitr3d 280 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
14 | 9, 10, 13 | syl2anr 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
15 | 1, 2 | om2uzuzi 13669 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ (ℤ≥‘𝐶)) |
16 | eluzelre 12593 | . . . . 5 ⊢ ((𝐺‘𝐵) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐵) ∈ ℝ) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ ℝ) |
18 | 1, 2 | om2uzuzi 13669 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
19 | eluzelre 12593 | . . . . 5 ⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℝ) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℝ) |
21 | leloe 11061 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) | |
22 | lenlt 11053 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) | |
23 | 21, 22 | bitr3d 280 | . . . 4 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
24 | 17, 20, 23 | syl2anr 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
25 | 8, 14, 24 | 3imtr3d 293 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
26 | 3, 25 | impcon4bid 226 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 class class class wbr 5074 ↦ cmpt 5157 ↾ cres 5591 Oncon0 6266 ‘cfv 6433 (class class class)co 7275 ωcom 7712 reccrdg 8240 ℝcr 10870 1c1 10872 + caddc 10874 < clt 11009 ≤ cle 11010 ℤcz 12319 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 |
This theorem is referenced by: om2uzisoi 13674 unbenlem 16609 |
Copyright terms: Public domain | W3C validator |