| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2uzlt2i | Structured version Visualization version GIF version | ||
| Description: The mapping 𝐺 (see om2uz0i 13858) preserves order. (Contributed by NM, 4-May-2005.) (Revised by Mario Carneiro, 13-Sep-2013.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| om2uzlt2i | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | . . 3 ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | . . 3 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 1, 2 | om2uzlti 13861 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 4 | 1, 2 | om2uzlti 13861 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) < (𝐺‘𝐴))) |
| 5 | fveq2 6830 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴)) | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴))) |
| 7 | 4, 6 | orim12d 966 | . . . 4 ⊢ ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
| 9 | nnon 7810 | . . . 4 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
| 10 | nnon 7810 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 11 | onsseleq 6354 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
| 12 | ontri1 6347 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 13 | 11, 12 | bitr3d 281 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 14 | 9, 10, 13 | syl2anr 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 15 | 1, 2 | om2uzuzi 13860 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ (ℤ≥‘𝐶)) |
| 16 | eluzelre 12751 | . . . . 5 ⊢ ((𝐺‘𝐵) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐵) ∈ ℝ) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝐵 ∈ ω → (𝐺‘𝐵) ∈ ℝ) |
| 18 | 1, 2 | om2uzuzi 13860 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
| 19 | eluzelre 12751 | . . . . 5 ⊢ ((𝐺‘𝐴) ∈ (ℤ≥‘𝐶) → (𝐺‘𝐴) ∈ ℝ) | |
| 20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ ℝ) |
| 21 | leloe 11208 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) | |
| 22 | lenlt 11200 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐺‘𝐵) ≤ (𝐺‘𝐴) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) | |
| 23 | 21, 22 | bitr3d 281 | . . . 4 ⊢ (((𝐺‘𝐵) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 24 | 17, 20, 23 | syl2anr 597 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (((𝐺‘𝐵) < (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 25 | 8, 14, 24 | 3imtr3d 293 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| 26 | 3, 25 | impcon4bid 227 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) < (𝐺‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 ↾ cres 5623 Oncon0 6313 ‘cfv 6488 (class class class)co 7354 ωcom 7804 reccrdg 8336 ℝcr 11014 1c1 11016 + caddc 11018 < clt 11155 ≤ cle 11156 ℤcz 12477 ℤ≥cuz 12740 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 |
| This theorem is referenced by: om2uzisoi 13865 unbenlem 16824 |
| Copyright terms: Public domain | W3C validator |