MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddel1 Structured version   Visualization version   GIF version

Theorem naddel1 8682
Description: Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
Assertion
Ref Expression
naddel1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))

Proof of Theorem naddel1
StepHypRef Expression
1 naddelim 8681 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
2 naddssim 8680 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶)))
323com12 1124 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶)))
4 ontri1 6395 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
54ancoms 460 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
653adant3 1133 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
7 naddcl 8672 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On)
873adant1 1131 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On)
9 naddcl 8672 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On)
10 ontri1 6395 . . . 4 (((𝐵 +no 𝐶) ∈ On ∧ (𝐴 +no 𝐶) ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
118, 9, 103imp3i2an 1346 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
123, 6, 113imtr3d 293 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐴𝐵 → ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
131, 12impcon4bid 226 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1088  wcel 2107  wss 3947  Oncon0 6361  (class class class)co 7404   +no cnadd 8660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-frecs 8261  df-nadd 8661
This theorem is referenced by:  naddel2  8683  naddss1  8684  naddel12  8695  addsproplem2  27434  mulsproplem2  27553  mulsproplem5  27556  mulsproplem6  27557  mulsproplem7  27558  mulsproplem8  27559
  Copyright terms: Public domain W3C validator