| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddel1 | Structured version Visualization version GIF version | ||
| Description: Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| naddel1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddelim 8604 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | |
| 2 | naddssim 8603 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶))) | |
| 3 | 2 | 3com12 1123 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶))) |
| 4 | ontri1 6341 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 5 | 4 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
| 6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
| 7 | naddcl 8595 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) | |
| 8 | 7 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) |
| 9 | naddcl 8595 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On) | |
| 10 | ontri1 6341 | . . . 4 ⊢ (((𝐵 +no 𝐶) ∈ On ∧ (𝐴 +no 𝐶) ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | |
| 11 | 8, 9, 10 | 3imp3i2an 1346 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| 12 | 3, 6, 11 | 3imtr3d 293 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| 13 | 1, 12 | impcon4bid 227 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3903 Oncon0 6307 (class class class)co 7349 +no cnadd 8583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-frecs 8214 df-nadd 8584 |
| This theorem is referenced by: naddel2 8606 naddss1 8607 naddel12 8618 addsproplem2 27882 mulsproplem2 28025 mulsproplem5 28028 mulsproplem6 28029 mulsproplem7 28030 mulsproplem8 28031 |
| Copyright terms: Public domain | W3C validator |