MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddel1 Structured version   Visualization version   GIF version

Theorem naddel1 8707
Description: Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
Assertion
Ref Expression
naddel1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))

Proof of Theorem naddel1
StepHypRef Expression
1 naddelim 8706 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
2 naddssim 8705 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶)))
323com12 1123 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶)))
4 ontri1 6397 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
54ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
653adant3 1132 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
7 naddcl 8697 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On)
873adant1 1130 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On)
9 naddcl 8697 . . . 4 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On)
10 ontri1 6397 . . . 4 (((𝐵 +no 𝐶) ∈ On ∧ (𝐴 +no 𝐶) ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
118, 9, 103imp3i2an 1345 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
123, 6, 113imtr3d 293 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐴𝐵 → ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
131, 12impcon4bid 227 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086  wcel 2107  wss 3931  Oncon0 6363  (class class class)co 7413   +no cnadd 8685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-frecs 8288  df-nadd 8686
This theorem is referenced by:  naddel2  8708  naddss1  8709  naddel12  8720  addsproplem2  27940  mulsproplem2  28080  mulsproplem5  28083  mulsproplem6  28084  mulsproplem7  28085  mulsproplem8  28086
  Copyright terms: Public domain W3C validator