![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddel1 | Structured version Visualization version GIF version |
Description: Ordinal less-than is not affected by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
Ref | Expression |
---|---|
naddel1 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddelim 8684 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | |
2 | naddssim 8683 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶))) | |
3 | 2 | 3com12 1123 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐴 → (𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶))) |
4 | ontri1 6398 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
5 | 4 | ancoms 459 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) |
7 | naddcl 8675 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) | |
8 | 7 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) ∈ On) |
9 | naddcl 8675 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 +no 𝐶) ∈ On) | |
10 | ontri1 6398 | . . . 4 ⊢ (((𝐵 +no 𝐶) ∈ On ∧ (𝐴 +no 𝐶) ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) | |
11 | 8, 9, 10 | 3imp3i2an 1345 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 +no 𝐶) ⊆ (𝐴 +no 𝐶) ↔ ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
12 | 3, 6, 11 | 3imtr3d 292 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
13 | 1, 12 | impcon4bid 226 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 ↔ (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1087 ∈ wcel 2106 ⊆ wss 3948 Oncon0 6364 (class class class)co 7408 +no cnadd 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-frecs 8265 df-nadd 8664 |
This theorem is referenced by: naddel2 8686 naddss1 8687 naddel12 8698 addsproplem2 27451 mulsproplem2 27570 mulsproplem5 27573 mulsproplem6 27574 mulsproplem7 27575 mulsproplem8 27576 |
Copyright terms: Public domain | W3C validator |