| Step | Hyp | Ref
| Expression |
| 1 | | neq0 4351 |
. . . 4
⊢ (¬
((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) |
| 2 | | vex 3483 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 3 | 2 | elima 6082 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐻 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐻𝑦) |
| 4 | | ssel 3976 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴)) |
| 5 | | isof1o 7344 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
| 6 | | f1ofn 6848 |
. . . . . . . . . . . . . . 15
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
| 7 | | fnbrfvb 6958 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
| 8 | 7 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Fn 𝐴 → (𝑥 ∈ 𝐴 → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦))) |
| 9 | 5, 6, 8 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦))) |
| 10 | 4, 9 | syl9r 78 |
. . . . . . . . . . . . 13
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)))) |
| 11 | 10 | imp31 417 |
. . . . . . . . . . . 12
⊢ (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
| 12 | 11 | rexbidva 3176 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐶 𝑥𝐻𝑦)) |
| 13 | 3, 12 | bitr4id 290 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐻 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦)) |
| 14 | | fvex 6918 |
. . . . . . . . . . 11
⊢ (𝐻‘𝐷) ∈ V |
| 15 | 2 | eliniseg 6111 |
. . . . . . . . . . 11
⊢ ((𝐻‘𝐷) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
| 16 | 14, 15 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
| 17 | 13, 16 | anbi12d 632 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝑦 ∈ (𝐻 “ 𝐶) ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
| 18 | | elin 3966 |
. . . . . . . . 9
⊢ (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (𝑦 ∈ (𝐻 “ 𝐶) ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
| 19 | | r19.41v 3188 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) ↔ (∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
| 20 | 17, 18, 19 | 3bitr4g 314 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ 𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
| 21 | 20 | adantrr 717 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ 𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
| 22 | | breq1 5145 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑥) = 𝑦 → ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ↔ 𝑦𝑆(𝐻‘𝐷))) |
| 23 | 22 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → (𝐻‘𝑥)𝑆(𝐻‘𝐷)) |
| 24 | | vex 3483 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
| 25 | 24 | eliniseg 6111 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
| 26 | 25 | ad2antll 729 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
| 27 | | isorel 7347 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
| 28 | 26, 27 | bitrd 279 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
| 29 | 23, 28 | imbitrrid 246 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
| 30 | 29 | exp32 420 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷}))))) |
| 31 | 4, 30 | syl9r 78 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → (𝐷 ∈ 𝐴 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷})))))) |
| 32 | 31 | com34 91 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐶 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷})))))) |
| 33 | 32 | imp32 418 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷})))) |
| 34 | 33 | reximdvai 3164 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑥 ∈ 𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → ∃𝑥 ∈ 𝐶 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
| 35 | 21, 34 | sylbid 240 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ∃𝑥 ∈ 𝐶 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
| 36 | | elin 3966 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
| 37 | 36 | exbii 1847 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
| 38 | | neq0 4351 |
. . . . . . 7
⊢ (¬
(𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷}))) |
| 39 | | df-rex 3070 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐶 𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
| 40 | 37, 38, 39 | 3bitr4i 303 |
. . . . . 6
⊢ (¬
(𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 ∈ 𝐶 𝑥 ∈ (◡𝑅 “ {𝐷})) |
| 41 | 35, 40 | imbitrrdi 252 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
| 42 | 41 | exlimdv 1932 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑦 𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
| 43 | 1, 42 | biimtrid 242 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → ¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
| 44 | 43 | con4d 115 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ → ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
| 45 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴) |
| 46 | | fnfvima 7254 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶)) |
| 47 | 46 | 3expia 1121 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
| 48 | 47 | adantrr 717 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
| 49 | 45, 48 | sylan 580 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
| 50 | 49 | adantrd 491 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
| 51 | 27 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 → (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
| 52 | | fvex 6918 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻‘𝑥) ∈ V |
| 53 | 52 | eliniseg 6111 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝐷) ∈ V → ((𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
| 54 | 14, 53 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷)) |
| 55 | 51, 54 | imbitrrdi 252 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
| 56 | 26, 55 | sylbid 240 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
| 57 | 56 | exp32 420 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))))) |
| 58 | 4, 57 | syl9r 78 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))))) |
| 59 | 58 | com34 91 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐶 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))))) |
| 60 | 59 | imp32 418 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))) |
| 61 | 60 | impd 410 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
| 62 | 50, 61 | jcad 512 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → ((𝐻‘𝑥) ∈ (𝐻 “ 𝐶) ∧ (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))) |
| 63 | | elin 3966 |
. . . . . 6
⊢ ((𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ((𝐻‘𝑥) ∈ (𝐻 “ 𝐶) ∧ (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
| 64 | 62, 36, 63 | 3imtr4g 296 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})))) |
| 65 | | n0i 4339 |
. . . . 5
⊢ ((𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅) |
| 66 | 64, 65 | syl6 35 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
| 67 | 66 | exlimdv 1932 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
| 68 | 38, 67 | biimtrid 242 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
| 69 | 44, 68 | impcon4bid 227 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |