MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isomin Structured version   Visualization version   GIF version

Theorem isomin 7326
Description: Isomorphisms preserve minimal elements. Note that (𝑅 “ {𝐷}) is Takeuti and Zaring's idiom for the initial segment {𝑥𝑥𝑅𝐷}. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.)
Assertion
Ref Expression
isomin ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))

Proof of Theorem isomin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 4325 . . . 4 (¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})))
2 vex 3461 . . . . . . . . . . . 12 𝑦 ∈ V
32elima 6050 . . . . . . . . . . 11 (𝑦 ∈ (𝐻𝐶) ↔ ∃𝑥𝐶 𝑥𝐻𝑦)
4 ssel 3950 . . . . . . . . . . . . . 14 (𝐶𝐴 → (𝑥𝐶𝑥𝐴))
5 isof1o 7312 . . . . . . . . . . . . . . 15 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
6 f1ofn 6816 . . . . . . . . . . . . . . 15 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
7 fnbrfvb 6926 . . . . . . . . . . . . . . . 16 ((𝐻 Fn 𝐴𝑥𝐴) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
87ex 412 . . . . . . . . . . . . . . 15 (𝐻 Fn 𝐴 → (𝑥𝐴 → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦)))
95, 6, 83syl 18 . . . . . . . . . . . . . 14 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦)))
104, 9syl9r 78 . . . . . . . . . . . . 13 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝑥𝐶 → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))))
1110imp31 417 . . . . . . . . . . . 12 (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
1211rexbidva 3160 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (∃𝑥𝐶 (𝐻𝑥) = 𝑦 ↔ ∃𝑥𝐶 𝑥𝐻𝑦))
133, 12bitr4id 290 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (𝑦 ∈ (𝐻𝐶) ↔ ∃𝑥𝐶 (𝐻𝑥) = 𝑦))
14 fvex 6886 . . . . . . . . . . 11 (𝐻𝐷) ∈ V
152eliniseg 6079 . . . . . . . . . . 11 ((𝐻𝐷) ∈ V → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1614, 15mp1i 13 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1713, 16anbi12d 632 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → ((𝑦 ∈ (𝐻𝐶) ∧ 𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐶 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
18 elin 3940 . . . . . . . . 9 (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ (𝑦 ∈ (𝐻𝐶) ∧ 𝑦 ∈ (𝑆 “ {(𝐻𝐷)})))
19 r19.41v 3172 . . . . . . . . 9 (∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) ↔ (∃𝑥𝐶 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
2017, 18, 193bitr4g 314 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
2120adantrr 717 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
22 breq1 5120 . . . . . . . . . . . . . 14 ((𝐻𝑥) = 𝑦 → ((𝐻𝑥)𝑆(𝐻𝐷) ↔ 𝑦𝑆(𝐻𝐷)))
2322biimpar 477 . . . . . . . . . . . . 13 (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → (𝐻𝑥)𝑆(𝐻𝐷))
24 vex 3461 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
2524eliniseg 6079 . . . . . . . . . . . . . . 15 (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
2625ad2antll 729 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
27 isorel 7315 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
2826, 27bitrd 279 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
2923, 28imbitrrid 246 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷})))
3029exp32 420 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷})))))
314, 30syl9r 78 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝑥𝐶 → (𝐷𝐴 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷}))))))
3231com34 91 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝐷𝐴 → (𝑥𝐶 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷}))))))
3332imp32 418 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷}))))
3433reximdvai 3149 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → ∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷})))
3521, 34sylbid 240 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷})))
36 elin 3940 . . . . . . . 8 (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})))
3736exbii 1847 . . . . . . 7 (∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) ↔ ∃𝑥(𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})))
38 neq0 4325 . . . . . . 7 (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})))
39 df-rex 3060 . . . . . . 7 (∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷}) ↔ ∃𝑥(𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})))
4037, 38, 393bitr4i 303 . . . . . 6 (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷}))
4135, 40imbitrrdi 252 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
4241exlimdv 1932 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (∃𝑦 𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
431, 42biimtrid 242 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ → ¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
4443con4d 115 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶 ∩ (𝑅 “ {𝐷})) = ∅ → ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
455, 6syl 17 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
46 fnfvima 7222 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝐶𝐴𝑥𝐶) → (𝐻𝑥) ∈ (𝐻𝐶))
47463expia 1121 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝐶𝐴) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
4847adantrr 717 . . . . . . . . 9 ((𝐻 Fn 𝐴 ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
4945, 48sylan 580 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
5049adantrd 491 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ (𝐻𝐶)))
5127biimpd 229 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 → (𝐻𝑥)𝑆(𝐻𝐷)))
52 fvex 6886 . . . . . . . . . . . . . . . 16 (𝐻𝑥) ∈ V
5352eliniseg 6079 . . . . . . . . . . . . . . 15 ((𝐻𝐷) ∈ V → ((𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}) ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
5414, 53ax-mp 5 . . . . . . . . . . . . . 14 ((𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}) ↔ (𝐻𝑥)𝑆(𝐻𝐷))
5551, 54imbitrrdi 252 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
5626, 55sylbid 240 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
5756exp32 420 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))))
584, 57syl9r 78 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝑥𝐶 → (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))))
5958com34 91 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝐷𝐴 → (𝑥𝐶 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))))
6059imp32 418 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))
6160impd 410 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
6250, 61jcad 512 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → ((𝐻𝑥) ∈ (𝐻𝐶) ∧ (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))
63 elin 3940 . . . . . 6 ((𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ((𝐻𝑥) ∈ (𝐻𝐶) ∧ (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
6462, 36, 633imtr4g 296 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)}))))
65 n0i 4313 . . . . 5 ((𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅)
6664, 65syl6 35 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
6766exlimdv 1932 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
6838, 67biimtrid 242 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
6944, 68impcon4bid 227 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  wrex 3059  Vcvv 3457  cin 3923  wss 3924  c0 4306  {csn 4599   class class class wbr 5117  ccnv 5651  cima 5655   Fn wfn 6523  1-1-ontowf1o 6527  cfv 6528   Isom wiso 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-f1o 6535  df-fv 6536  df-isom 6537
This theorem is referenced by:  isofrlem  7329
  Copyright terms: Public domain W3C validator