MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isomin Structured version   Visualization version   GIF version

Theorem isomin 7330
Description: Isomorphisms preserve minimal elements. Note that (𝑅 “ {𝐷}) is Takeuti and Zaring's idiom for the initial segment {𝑥𝑥𝑅𝐷}. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.)
Assertion
Ref Expression
isomin ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))

Proof of Theorem isomin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 4344 . . . 4 (¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})))
2 vex 3478 . . . . . . . . . . . 12 𝑦 ∈ V
32elima 6062 . . . . . . . . . . 11 (𝑦 ∈ (𝐻𝐶) ↔ ∃𝑥𝐶 𝑥𝐻𝑦)
4 ssel 3974 . . . . . . . . . . . . . 14 (𝐶𝐴 → (𝑥𝐶𝑥𝐴))
5 isof1o 7316 . . . . . . . . . . . . . . 15 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
6 f1ofn 6831 . . . . . . . . . . . . . . 15 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
7 fnbrfvb 6941 . . . . . . . . . . . . . . . 16 ((𝐻 Fn 𝐴𝑥𝐴) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
87ex 413 . . . . . . . . . . . . . . 15 (𝐻 Fn 𝐴 → (𝑥𝐴 → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦)))
95, 6, 83syl 18 . . . . . . . . . . . . . 14 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦)))
104, 9syl9r 78 . . . . . . . . . . . . 13 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝑥𝐶 → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))))
1110imp31 418 . . . . . . . . . . . 12 (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) ∧ 𝑥𝐶) → ((𝐻𝑥) = 𝑦𝑥𝐻𝑦))
1211rexbidva 3176 . . . . . . . . . . 11 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (∃𝑥𝐶 (𝐻𝑥) = 𝑦 ↔ ∃𝑥𝐶 𝑥𝐻𝑦))
133, 12bitr4id 289 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (𝑦 ∈ (𝐻𝐶) ↔ ∃𝑥𝐶 (𝐻𝑥) = 𝑦))
14 fvex 6901 . . . . . . . . . . 11 (𝐻𝐷) ∈ V
152eliniseg 6090 . . . . . . . . . . 11 ((𝐻𝐷) ∈ V → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1614, 15mp1i 13 . . . . . . . . . 10 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (𝑦 ∈ (𝑆 “ {(𝐻𝐷)}) ↔ 𝑦𝑆(𝐻𝐷)))
1713, 16anbi12d 631 . . . . . . . . 9 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → ((𝑦 ∈ (𝐻𝐶) ∧ 𝑦 ∈ (𝑆 “ {(𝐻𝐷)})) ↔ (∃𝑥𝐶 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
18 elin 3963 . . . . . . . . 9 (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ (𝑦 ∈ (𝐻𝐶) ∧ 𝑦 ∈ (𝑆 “ {(𝐻𝐷)})))
19 r19.41v 3188 . . . . . . . . 9 (∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) ↔ (∃𝑥𝐶 (𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)))
2017, 18, 193bitr4g 313 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶𝐴) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
2120adantrr 715 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷))))
22 breq1 5150 . . . . . . . . . . . . . 14 ((𝐻𝑥) = 𝑦 → ((𝐻𝑥)𝑆(𝐻𝐷) ↔ 𝑦𝑆(𝐻𝐷)))
2322biimpar 478 . . . . . . . . . . . . 13 (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → (𝐻𝑥)𝑆(𝐻𝐷))
24 vex 3478 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
2524eliniseg 6090 . . . . . . . . . . . . . . 15 (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
2625ad2antll 727 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷))
27 isorel 7319 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
2826, 27bitrd 278 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
2923, 28imbitrrid 245 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷})))
3029exp32 421 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷})))))
314, 30syl9r 78 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝑥𝐶 → (𝐷𝐴 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷}))))))
3231com34 91 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝐷𝐴 → (𝑥𝐶 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷}))))))
3332imp32 419 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → 𝑥 ∈ (𝑅 “ {𝐷}))))
3433reximdvai 3165 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (∃𝑥𝐶 ((𝐻𝑥) = 𝑦𝑦𝑆(𝐻𝐷)) → ∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷})))
3521, 34sylbid 239 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷})))
36 elin 3963 . . . . . . . 8 (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) ↔ (𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})))
3736exbii 1850 . . . . . . 7 (∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) ↔ ∃𝑥(𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})))
38 neq0 4344 . . . . . . 7 (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})))
39 df-rex 3071 . . . . . . 7 (∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷}) ↔ ∃𝑥(𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})))
4037, 38, 393bitr4i 302 . . . . . 6 (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥𝐶 𝑥 ∈ (𝑅 “ {𝐷}))
4135, 40syl6ibr 251 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
4241exlimdv 1936 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (∃𝑦 𝑦 ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
431, 42biimtrid 241 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅ → ¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅))
4443con4d 115 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶 ∩ (𝑅 “ {𝐷})) = ∅ → ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
455, 6syl 17 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
46 fnfvima 7231 . . . . . . . . . . 11 ((𝐻 Fn 𝐴𝐶𝐴𝑥𝐶) → (𝐻𝑥) ∈ (𝐻𝐶))
47463expia 1121 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝐶𝐴) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
4847adantrr 715 . . . . . . . . 9 ((𝐻 Fn 𝐴 ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
4945, 48sylan 580 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝐻𝑥) ∈ (𝐻𝐶)))
5049adantrd 492 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ (𝐻𝐶)))
5127biimpd 228 . . . . . . . . . . . . . 14 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 → (𝐻𝑥)𝑆(𝐻𝐷)))
52 fvex 6901 . . . . . . . . . . . . . . . 16 (𝐻𝑥) ∈ V
5352eliniseg 6090 . . . . . . . . . . . . . . 15 ((𝐻𝐷) ∈ V → ((𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}) ↔ (𝐻𝑥)𝑆(𝐻𝐷)))
5414, 53ax-mp 5 . . . . . . . . . . . . . 14 ((𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}) ↔ (𝐻𝑥)𝑆(𝐻𝐷))
5551, 54syl6ibr 251 . . . . . . . . . . . . 13 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥𝑅𝐷 → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
5626, 55sylbid 239 . . . . . . . . . . . 12 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥𝐴𝐷𝐴)) → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
5756exp32 421 . . . . . . . . . . 11 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥𝐴 → (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))))
584, 57syl9r 78 . . . . . . . . . 10 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝑥𝐶 → (𝐷𝐴 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))))
5958com34 91 . . . . . . . . 9 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶𝐴 → (𝐷𝐴 → (𝑥𝐶 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))))
6059imp32 419 . . . . . . . 8 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥𝐶 → (𝑥 ∈ (𝑅 “ {𝐷}) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))
6160impd 411 . . . . . . 7 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
6250, 61jcad 513 . . . . . 6 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝑥𝐶𝑥 ∈ (𝑅 “ {𝐷})) → ((𝐻𝑥) ∈ (𝐻𝐶) ∧ (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)}))))
63 elin 3963 . . . . . 6 ((𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) ↔ ((𝐻𝑥) ∈ (𝐻𝐶) ∧ (𝐻𝑥) ∈ (𝑆 “ {(𝐻𝐷)})))
6462, 36, 633imtr4g 295 . . . . 5 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → (𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)}))))
65 n0i 4332 . . . . 5 ((𝐻𝑥) ∈ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅)
6664, 65syl6 35 . . . 4 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
6766exlimdv 1936 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (∃𝑥 𝑥 ∈ (𝐶 ∩ (𝑅 “ {𝐷})) → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
6838, 67biimtrid 241 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (¬ (𝐶 ∩ (𝑅 “ {𝐷})) = ∅ → ¬ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
6944, 68impcon4bid 226 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wrex 3070  Vcvv 3474  cin 3946  wss 3947  c0 4321  {csn 4627   class class class wbr 5147  ccnv 5674  cima 5678   Fn wfn 6535  1-1-ontowf1o 6539  cfv 6540   Isom wiso 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-f1o 6547  df-fv 6548  df-isom 6549
This theorem is referenced by:  isofrlem  7333
  Copyright terms: Public domain W3C validator