Step | Hyp | Ref
| Expression |
1 | | neq0 4244 |
. . . 4
⊢ (¬
((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ ↔ ∃𝑦 𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) |
2 | | vex 3413 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
3 | 2 | elima 5906 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (𝐻 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 𝑥𝐻𝑦) |
4 | | ssel 3885 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐴)) |
5 | | isof1o 7070 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
6 | | f1ofn 6603 |
. . . . . . . . . . . . . . 15
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Fn 𝐴) |
7 | | fnbrfvb 6706 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
8 | 7 | ex 416 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 Fn 𝐴 → (𝑥 ∈ 𝐴 → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦))) |
9 | 5, 6, 8 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦))) |
10 | 4, 9 | syl9r 78 |
. . . . . . . . . . . . 13
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)))) |
11 | 10 | imp31 421 |
. . . . . . . . . . . 12
⊢ (((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) ∧ 𝑥 ∈ 𝐶) → ((𝐻‘𝑥) = 𝑦 ↔ 𝑥𝐻𝑦)) |
12 | 11 | rexbidva 3220 |
. . . . . . . . . . 11
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐶 𝑥𝐻𝑦)) |
13 | 3, 12 | bitr4id 293 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (𝐻 “ 𝐶) ↔ ∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦)) |
14 | | fvex 6671 |
. . . . . . . . . . 11
⊢ (𝐻‘𝐷) ∈ V |
15 | 2 | eliniseg 5930 |
. . . . . . . . . . 11
⊢ ((𝐻‘𝐷) ∈ V → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
16 | 14, 15 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ 𝑦𝑆(𝐻‘𝐷))) |
17 | 13, 16 | anbi12d 633 |
. . . . . . . . 9
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → ((𝑦 ∈ (𝐻 “ 𝐶) ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
18 | | elin 3874 |
. . . . . . . . 9
⊢ (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ (𝑦 ∈ (𝐻 “ 𝐶) ∧ 𝑦 ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
19 | | r19.41v 3265 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) ↔ (∃𝑥 ∈ 𝐶 (𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷))) |
20 | 17, 18, 19 | 3bitr4g 317 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐶 ⊆ 𝐴) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ 𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
21 | 20 | adantrr 716 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ∃𝑥 ∈ 𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)))) |
22 | | breq1 5035 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑥) = 𝑦 → ((𝐻‘𝑥)𝑆(𝐻‘𝐷) ↔ 𝑦𝑆(𝐻‘𝐷))) |
23 | 22 | biimpar 481 |
. . . . . . . . . . . . 13
⊢ (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → (𝐻‘𝑥)𝑆(𝐻‘𝐷)) |
24 | | vex 3413 |
. . . . . . . . . . . . . . . 16
⊢ 𝑥 ∈ V |
25 | 24 | eliniseg 5930 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
26 | 25 | ad2antll 728 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ 𝑥𝑅𝐷)) |
27 | | isorel 7073 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
28 | 26, 27 | bitrd 282 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
29 | 23, 28 | syl5ibr 249 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
30 | 29 | exp32 424 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷}))))) |
31 | 4, 30 | syl9r 78 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → (𝐷 ∈ 𝐴 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷})))))) |
32 | 31 | com34 91 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐶 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷})))))) |
33 | 32 | imp32 422 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → 𝑥 ∈ (◡𝑅 “ {𝐷})))) |
34 | 33 | reximdvai 3196 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑥 ∈ 𝐶 ((𝐻‘𝑥) = 𝑦 ∧ 𝑦𝑆(𝐻‘𝐷)) → ∃𝑥 ∈ 𝐶 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
35 | 21, 34 | sylbid 243 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ∃𝑥 ∈ 𝐶 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
36 | | elin 3874 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) ↔ (𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
37 | 36 | exbii 1849 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
38 | | neq0 4244 |
. . . . . . 7
⊢ (¬
(𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷}))) |
39 | | df-rex 3076 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐶 𝑥 ∈ (◡𝑅 “ {𝐷}) ↔ ∃𝑥(𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷}))) |
40 | 37, 38, 39 | 3bitr4i 306 |
. . . . . 6
⊢ (¬
(𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ∃𝑥 ∈ 𝐶 𝑥 ∈ (◡𝑅 “ {𝐷})) |
41 | 35, 40 | syl6ibr 255 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
42 | 41 | exlimdv 1934 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑦 𝑦 ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
43 | 1, 42 | syl5bi 245 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅ → ¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅)) |
44 | 43 | con4d 115 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ → ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
45 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴) |
46 | | fnfvima 6987 |
. . . . . . . . . . 11
⊢ ((𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐶) → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶)) |
47 | 46 | 3expia 1118 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝐶 ⊆ 𝐴) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
48 | 47 | adantrr 716 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐴 ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
49 | 45, 48 | sylan 583 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
50 | 49 | adantrd 495 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ (𝐻 “ 𝐶))) |
51 | 27 | biimpd 232 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 → (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
52 | | fvex 6671 |
. . . . . . . . . . . . . . . 16
⊢ (𝐻‘𝑥) ∈ V |
53 | 52 | eliniseg 5930 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻‘𝐷) ∈ V → ((𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷))) |
54 | 14, 53 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ((𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}) ↔ (𝐻‘𝑥)𝑆(𝐻‘𝐷)) |
55 | 51, 54 | syl6ibr 255 |
. . . . . . . . . . . . 13
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥𝑅𝐷 → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
56 | 26, 55 | sylbid 243 |
. . . . . . . . . . . 12
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
57 | 56 | exp32 424 |
. . . . . . . . . . 11
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑥 ∈ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))))) |
58 | 4, 57 | syl9r 78 |
. . . . . . . . . 10
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝑥 ∈ 𝐶 → (𝐷 ∈ 𝐴 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))))) |
59 | 58 | com34 91 |
. . . . . . . . 9
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐶 ⊆ 𝐴 → (𝐷 ∈ 𝐴 → (𝑥 ∈ 𝐶 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))))) |
60 | 59 | imp32 422 |
. . . . . . . 8
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ 𝐶 → (𝑥 ∈ (◡𝑅 “ {𝐷}) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))) |
61 | 60 | impd 414 |
. . . . . . 7
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
62 | 50, 61 | jcad 516 |
. . . . . 6
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝑥 ∈ 𝐶 ∧ 𝑥 ∈ (◡𝑅 “ {𝐷})) → ((𝐻‘𝑥) ∈ (𝐻 “ 𝐶) ∧ (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)})))) |
63 | | elin 3874 |
. . . . . 6
⊢ ((𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) ↔ ((𝐻‘𝑥) ∈ (𝐻 “ 𝐶) ∧ (𝐻‘𝑥) ∈ (◡𝑆 “ {(𝐻‘𝐷)}))) |
64 | 62, 36, 63 | 3imtr4g 299 |
. . . . 5
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → (𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})))) |
65 | | n0i 4232 |
. . . . 5
⊢ ((𝐻‘𝑥) ∈ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅) |
66 | 64, 65 | syl6 35 |
. . . 4
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
67 | 66 | exlimdv 1934 |
. . 3
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑥 𝑥 ∈ (𝐶 ∩ (◡𝑅 “ {𝐷})) → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
68 | 38, 67 | syl5bi 245 |
. 2
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ (𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ → ¬ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |
69 | 44, 68 | impcon4bid 230 |
1
⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) |