MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephdom Structured version   Visualization version   GIF version

Theorem alephdom 10034
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.)
Assertion
Ref Expression
alephdom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))

Proof of Theorem alephdom
StepHypRef Expression
1 onsseleq 6373 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
2 alephord 10028 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
3 sdomdom 8951 . . . . 5 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
42, 3biimtrdi 253 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
5 fvex 6871 . . . . . . 7 (ℵ‘𝐴) ∈ V
6 fveq2 6858 . . . . . . 7 (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵))
7 eqeng 8957 . . . . . . 7 ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
85, 6, 7mpsyl 68 . . . . . 6 (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))
98a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
10 endom 8950 . . . . 5 ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
119, 10syl6 35 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
124, 11jaod 859 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
131, 12sylbid 240 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
14 eloni 6342 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 eloni 6342 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
16 ordtri2or 6432 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐴𝐵))
1714, 15, 16syl2anr 597 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴𝐴𝐵))
1817ord 864 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴𝐴𝐵))
1918con1d 145 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
20 alephord 10028 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
2120ancoms 458 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
22 sdomnen 8952 . . . . 5 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴))
23 sdomdom 8951 . . . . . 6 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴))
24 sbth 9061 . . . . . . 7 (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))
2524ex 412 . . . . . 6 ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)))
2623, 25syl 17 . . . . 5 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)))
2722, 26mtod 198 . . . 4 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))
2821, 27biimtrdi 253 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
2919, 28syld 47 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
3013, 29impcon4bid 227 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  Ord word 6331  Oncon0 6332  cfv 6511  cen 8915  cdom 8916  csdm 8917  cale 9889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-oi 9463  df-har 9510  df-card 9892  df-aleph 9893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator