Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephdom Structured version   Visualization version   GIF version

Theorem alephdom 9526
 Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.)
Assertion
Ref Expression
alephdom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))

Proof of Theorem alephdom
StepHypRef Expression
1 onsseleq 6203 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
2 alephord 9520 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
3 sdomdom 8548 . . . . 5 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
42, 3syl6bi 256 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
5 fvex 6664 . . . . . . 7 (ℵ‘𝐴) ∈ V
6 fveq2 6651 . . . . . . 7 (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵))
7 eqeng 8554 . . . . . . 7 ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
85, 6, 7mpsyl 68 . . . . . 6 (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))
98a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
10 endom 8547 . . . . 5 ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
119, 10syl6 35 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
124, 11jaod 857 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
131, 12sylbid 243 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
14 eloni 6172 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 eloni 6172 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
16 ordtri2or 6257 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐴𝐵))
1714, 15, 16syl2anr 600 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴𝐴𝐵))
1817ord 862 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴𝐴𝐵))
1918con1d 147 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
20 alephord 9520 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
2120ancoms 463 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
22 sdomnen 8549 . . . . 5 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴))
23 sdomdom 8548 . . . . . 6 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴))
24 sbth 8651 . . . . . . 7 (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))
2524ex 417 . . . . . 6 ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)))
2623, 25syl 17 . . . . 5 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)))
2722, 26mtod 201 . . . 4 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))
2821, 27syl6bi 256 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
2919, 28syld 47 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
3013, 29impcon4bid 230 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   ∨ wo 845   = wceq 1539   ∈ wcel 2112  Vcvv 3407   ⊆ wss 3854   class class class wbr 5025  Ord word 6161  Oncon0 6162  ‘cfv 6328   ≈ cen 8517   ≼ cdom 8518   ≺ csdm 8519  ℵcale 9383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-om 7573  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-oi 8992  df-har 9039  df-card 9386  df-aleph 9387 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator