MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephdom Structured version   Visualization version   GIF version

Theorem alephdom 9501
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.)
Assertion
Ref Expression
alephdom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))

Proof of Theorem alephdom
StepHypRef Expression
1 onsseleq 6227 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
2 alephord 9495 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵)))
3 sdomdom 8531 . . . . 5 ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
42, 3syl6bi 255 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
5 fvex 6678 . . . . . . 7 (ℵ‘𝐴) ∈ V
6 fveq2 6665 . . . . . . 7 (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵))
7 eqeng 8537 . . . . . . 7 ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
85, 6, 7mpsyl 68 . . . . . 6 (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))
98a1i 11 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)))
10 endom 8530 . . . . 5 ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))
119, 10syl6 35 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
124, 11jaod 855 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴𝐵𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
131, 12sylbid 242 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
14 eloni 6196 . . . . . 6 (𝐵 ∈ On → Ord 𝐵)
15 eloni 6196 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
16 ordtri2or 6281 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵𝐴𝐴𝐵))
1714, 15, 16syl2anr 598 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴𝐴𝐵))
1817ord 860 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝐴𝐴𝐵))
1918con1d 147 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵𝐵𝐴))
20 alephord 9495 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
2120ancoms 461 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴)))
22 sdomnen 8532 . . . . 5 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴))
23 sdomdom 8531 . . . . . 6 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴))
24 sbth 8631 . . . . . . 7 (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))
2524ex 415 . . . . . 6 ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)))
2623, 25syl 17 . . . . 5 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)))
2722, 26mtod 200 . . . 4 ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))
2821, 27syl6bi 255 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
2919, 28syld 47 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
3013, 29impcon4bid 229 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3495  wss 3936   class class class wbr 5059  Ord word 6185  Oncon0 6186  cfv 6350  cen 8500  cdom 8501  csdm 8502  cale 9359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-oi 8968  df-har 9016  df-card 9362  df-aleph 9363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator