| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephdom | Structured version Visualization version GIF version | ||
| Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
| Ref | Expression |
|---|---|
| alephdom | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsseleq 6352 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 2 | alephord 9988 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
| 3 | sdomdom 8912 | . . . . 5 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
| 4 | 2, 3 | biimtrdi 253 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 5 | fvex 6839 | . . . . . . 7 ⊢ (ℵ‘𝐴) ∈ V | |
| 6 | fveq2 6826 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵)) | |
| 7 | eqeng 8918 | . . . . . . 7 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
| 8 | 5, 6, 7 | mpsyl 68 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)) |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) |
| 10 | endom 8911 | . . . . 5 ⊢ ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
| 11 | 9, 10 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 12 | 4, 11 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 13 | 1, 12 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 14 | eloni 6321 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 15 | eloni 6321 | . . . . . 6 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 16 | ordtri2or 6411 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) | |
| 17 | 14, 15, 16 | syl2anr 597 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) |
| 18 | 17 | ord 864 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵)) |
| 19 | 18 | con1d 145 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ∈ 𝐴)) |
| 20 | alephord 9988 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
| 21 | 20 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) |
| 22 | sdomnen 8913 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
| 23 | sdomdom 8912 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴)) | |
| 24 | sbth 9021 | . . . . . . 7 ⊢ (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
| 25 | 24 | ex 412 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
| 26 | 23, 25 | syl 17 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
| 27 | 22, 26 | mtod 198 | . . . 4 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) |
| 28 | 21, 27 | biimtrdi 253 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 29 | 19, 28 | syld 47 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 30 | 13, 29 | impcon4bid 227 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 class class class wbr 5095 Ord word 6310 Oncon0 6311 ‘cfv 6486 ≈ cen 8876 ≼ cdom 8877 ≺ csdm 8878 ℵcale 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-oi 9421 df-har 9468 df-card 9854 df-aleph 9855 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |