Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephdom | Structured version Visualization version GIF version |
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
Ref | Expression |
---|---|
alephdom | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsseleq 6292 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | alephord 9762 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
3 | sdomdom 8723 | . . . . 5 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
4 | 2, 3 | syl6bi 252 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
5 | fvex 6769 | . . . . . . 7 ⊢ (ℵ‘𝐴) ∈ V | |
6 | fveq2 6756 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵)) | |
7 | eqeng 8729 | . . . . . . 7 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
8 | 5, 6, 7 | mpsyl 68 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) |
10 | endom 8722 | . . . . 5 ⊢ ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
11 | 9, 10 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
12 | 4, 11 | jaod 855 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
13 | 1, 12 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
14 | eloni 6261 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
15 | eloni 6261 | . . . . . 6 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
16 | ordtri2or 6346 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) | |
17 | 14, 15, 16 | syl2anr 596 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) |
18 | 17 | ord 860 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵)) |
19 | 18 | con1d 145 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ∈ 𝐴)) |
20 | alephord 9762 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
21 | 20 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) |
22 | sdomnen 8724 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
23 | sdomdom 8723 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴)) | |
24 | sbth 8833 | . . . . . . 7 ⊢ (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
25 | 24 | ex 412 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
26 | 23, 25 | syl 17 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
27 | 22, 26 | mtod 197 | . . . 4 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) |
28 | 21, 27 | syl6bi 252 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
29 | 19, 28 | syld 47 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
30 | 13, 29 | impcon4bid 226 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 Ord word 6250 Oncon0 6251 ‘cfv 6418 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 ℵcale 9625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-oi 9199 df-har 9246 df-card 9628 df-aleph 9629 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |