![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephdom | Structured version Visualization version GIF version |
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
Ref | Expression |
---|---|
alephdom | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsseleq 6403 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | alephord 10096 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
3 | sdomdom 8997 | . . . . 5 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
4 | 2, 3 | biimtrdi 252 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
5 | fvex 6903 | . . . . . . 7 ⊢ (ℵ‘𝐴) ∈ V | |
6 | fveq2 6890 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵)) | |
7 | eqeng 9003 | . . . . . . 7 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
8 | 5, 6, 7 | mpsyl 68 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) |
10 | endom 8996 | . . . . 5 ⊢ ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
11 | 9, 10 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
12 | 4, 11 | jaod 857 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
13 | 1, 12 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
14 | eloni 6372 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
15 | eloni 6372 | . . . . . 6 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
16 | ordtri2or 6460 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) | |
17 | 14, 15, 16 | syl2anr 595 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) |
18 | 17 | ord 862 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵)) |
19 | 18 | con1d 145 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ∈ 𝐴)) |
20 | alephord 10096 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
21 | 20 | ancoms 457 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) |
22 | sdomnen 8998 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
23 | sdomdom 8997 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴)) | |
24 | sbth 9114 | . . . . . . 7 ⊢ (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
25 | 24 | ex 411 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
26 | 23, 25 | syl 17 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
27 | 22, 26 | mtod 197 | . . . 4 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) |
28 | 21, 27 | biimtrdi 252 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
29 | 19, 28 | syld 47 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
30 | 13, 29 | impcon4bid 226 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3939 class class class wbr 5141 Ord word 6361 Oncon0 6362 ‘cfv 6541 ≈ cen 8957 ≼ cdom 8958 ≺ csdm 8959 ℵcale 9957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-om 7867 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-oi 9531 df-har 9578 df-card 9960 df-aleph 9961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |