| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephdom | Structured version Visualization version GIF version | ||
| Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
| Ref | Expression |
|---|---|
| alephdom | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsseleq 6425 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 2 | alephord 10115 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
| 3 | sdomdom 9020 | . . . . 5 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
| 4 | 2, 3 | biimtrdi 253 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 5 | fvex 6919 | . . . . . . 7 ⊢ (ℵ‘𝐴) ∈ V | |
| 6 | fveq2 6906 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵)) | |
| 7 | eqeng 9026 | . . . . . . 7 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
| 8 | 5, 6, 7 | mpsyl 68 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)) |
| 9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) |
| 10 | endom 9019 | . . . . 5 ⊢ ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
| 11 | 9, 10 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 12 | 4, 11 | jaod 860 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 13 | 1, 12 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 14 | eloni 6394 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 15 | eloni 6394 | . . . . . 6 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 16 | ordtri2or 6482 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) | |
| 17 | 14, 15, 16 | syl2anr 597 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) |
| 18 | 17 | ord 865 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵)) |
| 19 | 18 | con1d 145 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ∈ 𝐴)) |
| 20 | alephord 10115 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
| 21 | 20 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) |
| 22 | sdomnen 9021 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
| 23 | sdomdom 9020 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴)) | |
| 24 | sbth 9133 | . . . . . . 7 ⊢ (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
| 25 | 24 | ex 412 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
| 26 | 23, 25 | syl 17 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
| 27 | 22, 26 | mtod 198 | . . . 4 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) |
| 28 | 21, 27 | biimtrdi 253 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 29 | 19, 28 | syld 47 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| 30 | 13, 29 | impcon4bid 227 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 class class class wbr 5143 Ord word 6383 Oncon0 6384 ‘cfv 6561 ≈ cen 8982 ≼ cdom 8983 ≺ csdm 8984 ℵcale 9976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-oi 9550 df-har 9597 df-card 9979 df-aleph 9980 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |