![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephdom | Structured version Visualization version GIF version |
Description: Relationship between inclusion of ordinal numbers and dominance of infinite initial ordinals. (Contributed by Jeff Hankins, 23-Oct-2009.) |
Ref | Expression |
---|---|
alephdom | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsseleq 6426 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | alephord 10112 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ↔ (ℵ‘𝐴) ≺ (ℵ‘𝐵))) | |
3 | sdomdom 9018 | . . . . 5 ⊢ ((ℵ‘𝐴) ≺ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
4 | 2, 3 | biimtrdi 253 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
5 | fvex 6919 | . . . . . . 7 ⊢ (ℵ‘𝐴) ∈ V | |
6 | fveq2 6906 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) = (ℵ‘𝐵)) | |
7 | eqeng 9024 | . . . . . . 7 ⊢ ((ℵ‘𝐴) ∈ V → ((ℵ‘𝐴) = (ℵ‘𝐵) → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) | |
8 | 5, 6, 7 | mpsyl 68 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵)) |
9 | 8 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≈ (ℵ‘𝐵))) |
10 | endom 9017 | . . . . 5 ⊢ ((ℵ‘𝐴) ≈ (ℵ‘𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵)) | |
11 | 9, 10 | syl6 35 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
12 | 4, 11 | jaod 859 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
13 | 1, 12 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
14 | eloni 6395 | . . . . . 6 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
15 | eloni 6395 | . . . . . 6 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
16 | ordtri2or 6483 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) | |
17 | 14, 15, 16 | syl2anr 597 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ∨ 𝐴 ⊆ 𝐵)) |
18 | 17 | ord 864 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝐴 → 𝐴 ⊆ 𝐵)) |
19 | 18 | con1d 145 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → 𝐵 ∈ 𝐴)) |
20 | alephord 10112 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) | |
21 | 20 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 ↔ (ℵ‘𝐵) ≺ (ℵ‘𝐴))) |
22 | sdomnen 9019 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
23 | sdomdom 9018 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → (ℵ‘𝐵) ≼ (ℵ‘𝐴)) | |
24 | sbth 9131 | . . . . . . 7 ⊢ (((ℵ‘𝐵) ≼ (ℵ‘𝐴) ∧ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) → (ℵ‘𝐵) ≈ (ℵ‘𝐴)) | |
25 | 24 | ex 412 | . . . . . 6 ⊢ ((ℵ‘𝐵) ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
26 | 23, 25 | syl 17 | . . . . 5 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ((ℵ‘𝐴) ≼ (ℵ‘𝐵) → (ℵ‘𝐵) ≈ (ℵ‘𝐴))) |
27 | 22, 26 | mtod 198 | . . . 4 ⊢ ((ℵ‘𝐵) ≺ (ℵ‘𝐴) → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵)) |
28 | 21, 27 | biimtrdi 253 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ 𝐴 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
29 | 19, 28 | syld 47 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐴 ⊆ 𝐵 → ¬ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
30 | 13, 29 | impcon4bid 227 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (ℵ‘𝐴) ≼ (ℵ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 class class class wbr 5147 Ord word 6384 Oncon0 6385 ‘cfv 6562 ≈ cen 8980 ≼ cdom 8981 ≺ csdm 8982 ℵcale 9973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-oi 9547 df-har 9594 df-card 9976 df-aleph 9977 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |