MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdsb Structured version   Visualization version   GIF version

Theorem pcdvdsb 16195
Description: 𝑃𝐴 divides 𝑁 if and only if 𝐴 is at most the count of 𝑃. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))

Proof of Theorem pcdvdsb
StepHypRef Expression
1 oveq2 7143 . . . 4 (𝑁 = 0 → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0))
21breq2d 5042 . . 3 (𝑁 = 0 → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ 𝐴 ≤ (𝑃 pCnt 0)))
3 breq2 5034 . . 3 (𝑁 = 0 → ((𝑃𝐴) ∥ 𝑁 ↔ (𝑃𝐴) ∥ 0))
42, 3bibi12d 349 . 2 (𝑁 = 0 → ((𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁) ↔ (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0)))
5 simpl3 1190 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℕ0)
65nn0zd 12073 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
7 simpl1 1188 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℙ)
8 simpl2 1189 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
9 simpr 488 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
10 pczcl 16175 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0)
117, 8, 9, 10syl12anc 835 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℕ0)
1211nn0zd 12073 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℤ)
13 eluz 12245 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
146, 12, 13syl2anc 587 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
15 prmnn 16008 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
167, 15syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℕ)
1716nnzd 12074 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℤ)
18 dvdsexp 15669 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ∧ (𝑃 pCnt 𝑁) ∈ (ℤ𝐴)) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)))
19183expia 1118 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
2017, 5, 19syl2anc 587 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
2114, 20sylbird 263 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
22 pczdvds 16189 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
237, 8, 9, 22syl12anc 835 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
24 nnexpcl 13438 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
2515, 24sylan 583 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
26253adant2 1128 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
2726nnzd 12074 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
2827adantr 484 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃𝐴) ∈ ℤ)
2916, 11nnexpcld 13602 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
3029nnzd 12074 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
31 dvdstr 15638 . . . . . 6 (((𝑃𝐴) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
3228, 30, 8, 31syl3anc 1368 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
3323, 32mpan2d 693 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) → (𝑃𝐴) ∥ 𝑁))
3421, 33syld 47 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ 𝑁))
35 nn0re 11894 . . . . . . 7 ((𝑃 pCnt 𝑁) ∈ ℕ0 → (𝑃 pCnt 𝑁) ∈ ℝ)
36 nn0re 11894 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
37 ltnle 10709 . . . . . . 7 (((𝑃 pCnt 𝑁) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
3835, 36, 37syl2an 598 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
39 nn0ltp1le 12028 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4038, 39bitr3d 284 . . . . 5 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4111, 5, 40syl2anc 587 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
42 peano2nn0 11925 . . . . . . . . 9 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
4311, 42syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
4443nn0zd 12073 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℤ)
45 eluz 12245 . . . . . . 7 ((((𝑃 pCnt 𝑁) + 1) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4644, 6, 45syl2anc 587 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
47 dvdsexp 15669 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1))) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴))
48473expia 1118 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
4917, 43, 48syl2anc 587 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
5046, 49sylbird 263 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
51 pczndvds 16191 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
527, 8, 9, 51syl12anc 835 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
5316, 43nnexpcld 13602 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℕ)
5453nnzd 12074 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ)
55 dvdstr 15638 . . . . . . . 8 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
5654, 28, 8, 55syl3anc 1368 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
5752, 56mtod 201 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
58 imnan 403 . . . . . 6 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁) ↔ ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
5957, 58sylibr 237 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁))
6050, 59syld 47 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → ¬ (𝑃𝐴) ∥ 𝑁))
6141, 60sylbid 243 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) → ¬ (𝑃𝐴) ∥ 𝑁))
6234, 61impcon4bid 230 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
63363ad2ant3 1132 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
6463rexrd 10680 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ*)
65 pnfge 12513 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
6664, 65syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ +∞)
67 pc0 16181 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
68673ad2ant1 1130 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt 0) = +∞)
6966, 68breqtrrd 5058 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt 0))
70 dvds0 15617 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ 0)
7127, 70syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ 0)
7269, 712thd 268 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0))
734, 62, 72pm2.61ne 3072 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cn 11625  0cn0 11885  cz 11969  cuz 12231  cexp 13425  cdvds 15599  cprime 16005   pCnt cpc 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164
This theorem is referenced by:  pcelnn  16196  pcidlem  16198  pcdvdstr  16202  pcgcd1  16203  pcfac  16225  pockthlem  16231  pockthg  16232  prmreclem2  16243  sylow1lem1  18715  sylow1lem3  18717  sylow1lem5  18719  ablfac1c  19186  ablfac1eu  19188  issqf  25721  vmasum  25800
  Copyright terms: Public domain W3C validator