MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdsb Structured version   Visualization version   GIF version

Theorem pcdvdsb 16798
Description: 𝑃𝐴 divides 𝑁 if and only if 𝐴 is at most the count of 𝑃. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))

Proof of Theorem pcdvdsb
StepHypRef Expression
1 oveq2 7413 . . . 4 (𝑁 = 0 → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0))
21breq2d 5159 . . 3 (𝑁 = 0 → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ 𝐴 ≤ (𝑃 pCnt 0)))
3 breq2 5151 . . 3 (𝑁 = 0 → ((𝑃𝐴) ∥ 𝑁 ↔ (𝑃𝐴) ∥ 0))
42, 3bibi12d 345 . 2 (𝑁 = 0 → ((𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁) ↔ (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0)))
5 simpl3 1193 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℕ0)
65nn0zd 12580 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
7 simpl1 1191 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℙ)
8 simpl2 1192 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
9 simpr 485 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
10 pczcl 16777 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0)
117, 8, 9, 10syl12anc 835 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℕ0)
1211nn0zd 12580 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℤ)
13 eluz 12832 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
146, 12, 13syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
15 prmnn 16607 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
167, 15syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℕ)
1716nnzd 12581 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℤ)
18 dvdsexp 16267 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ∧ (𝑃 pCnt 𝑁) ∈ (ℤ𝐴)) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)))
19183expia 1121 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
2017, 5, 19syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
2114, 20sylbird 259 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
22 pczdvds 16792 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
237, 8, 9, 22syl12anc 835 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
24 nnexpcl 14036 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
2515, 24sylan 580 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
26253adant2 1131 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
2726nnzd 12581 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
2827adantr 481 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃𝐴) ∈ ℤ)
2916, 11nnexpcld 14204 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
3029nnzd 12581 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
31 dvdstr 16233 . . . . . 6 (((𝑃𝐴) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
3228, 30, 8, 31syl3anc 1371 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
3323, 32mpan2d 692 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) → (𝑃𝐴) ∥ 𝑁))
3421, 33syld 47 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ 𝑁))
35 nn0re 12477 . . . . . . 7 ((𝑃 pCnt 𝑁) ∈ ℕ0 → (𝑃 pCnt 𝑁) ∈ ℝ)
36 nn0re 12477 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
37 ltnle 11289 . . . . . . 7 (((𝑃 pCnt 𝑁) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
3835, 36, 37syl2an 596 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
39 nn0ltp1le 12616 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4038, 39bitr3d 280 . . . . 5 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4111, 5, 40syl2anc 584 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
42 peano2nn0 12508 . . . . . . . . 9 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
4311, 42syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
4443nn0zd 12580 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℤ)
45 eluz 12832 . . . . . . 7 ((((𝑃 pCnt 𝑁) + 1) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4644, 6, 45syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
47 dvdsexp 16267 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1))) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴))
48473expia 1121 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
4917, 43, 48syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
5046, 49sylbird 259 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
51 pczndvds 16794 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
527, 8, 9, 51syl12anc 835 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
5316, 43nnexpcld 14204 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℕ)
5453nnzd 12581 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ)
55 dvdstr 16233 . . . . . . . 8 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
5654, 28, 8, 55syl3anc 1371 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
5752, 56mtod 197 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
58 imnan 400 . . . . . 6 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁) ↔ ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
5957, 58sylibr 233 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁))
6050, 59syld 47 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → ¬ (𝑃𝐴) ∥ 𝑁))
6141, 60sylbid 239 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) → ¬ (𝑃𝐴) ∥ 𝑁))
6234, 61impcon4bid 226 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
63363ad2ant3 1135 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
6463rexrd 11260 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ*)
65 pnfge 13106 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
6664, 65syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ +∞)
67 pc0 16783 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
68673ad2ant1 1133 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt 0) = +∞)
6966, 68breqtrrd 5175 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt 0))
70 dvds0 16211 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ 0)
7127, 70syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ 0)
7269, 712thd 264 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0))
734, 62, 72pm2.61ne 3027 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106  1c1 11107   + caddc 11109  +∞cpnf 11241  *cxr 11243   < clt 11244  cle 11245  cn 12208  0cn0 12468  cz 12554  cuz 12818  cexp 14023  cdvds 16193  cprime 16604   pCnt cpc 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766
This theorem is referenced by:  pcelnn  16799  pcidlem  16801  pcdvdstr  16805  pcgcd1  16806  pcfac  16828  pockthlem  16834  pockthg  16835  prmreclem2  16846  sylow1lem1  19460  sylow1lem3  19462  sylow1lem5  19464  ablfac1c  19935  ablfac1eu  19937  issqf  26629  vmasum  26708
  Copyright terms: Public domain W3C validator