MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdsb Structured version   Visualization version   GIF version

Theorem pcdvdsb 16799
Description: 𝑃𝐴 divides 𝑁 if and only if 𝐴 is at most the count of 𝑃. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcdvdsb ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))

Proof of Theorem pcdvdsb
StepHypRef Expression
1 oveq2 7361 . . . 4 (𝑁 = 0 → (𝑃 pCnt 𝑁) = (𝑃 pCnt 0))
21breq2d 5107 . . 3 (𝑁 = 0 → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ 𝐴 ≤ (𝑃 pCnt 0)))
3 breq2 5099 . . 3 (𝑁 = 0 → ((𝑃𝐴) ∥ 𝑁 ↔ (𝑃𝐴) ∥ 0))
42, 3bibi12d 345 . 2 (𝑁 = 0 → ((𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁) ↔ (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0)))
5 simpl3 1194 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℕ0)
65nn0zd 12515 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝐴 ∈ ℤ)
7 simpl1 1192 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℙ)
8 simpl2 1193 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ∈ ℤ)
9 simpr 484 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑁 ≠ 0)
10 pczcl 16778 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃 pCnt 𝑁) ∈ ℕ0)
117, 8, 9, 10syl12anc 836 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℕ0)
1211nn0zd 12515 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃 pCnt 𝑁) ∈ ℤ)
13 eluz 12767 . . . . . 6 ((𝐴 ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℤ) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
146, 12, 13syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) ↔ 𝐴 ≤ (𝑃 pCnt 𝑁)))
15 prmnn 16603 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
167, 15syl 17 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℕ)
1716nnzd 12516 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → 𝑃 ∈ ℤ)
18 dvdsexp 16257 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ∧ (𝑃 pCnt 𝑁) ∈ (ℤ𝐴)) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)))
19183expia 1121 . . . . . 6 ((𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
2017, 5, 19syl2anc 584 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) ∈ (ℤ𝐴) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
2114, 20sylbird 260 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁))))
22 pczdvds 16793 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
237, 8, 9, 22syl12anc 836 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
24 nnexpcl 13999 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
2515, 24sylan 580 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
26253adant2 1131 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℕ)
2726nnzd 12516 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∈ ℤ)
2827adantr 480 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃𝐴) ∈ ℤ)
2916, 11nnexpcld 14170 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℕ)
3029nnzd 12516 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
31 dvdstr 16223 . . . . . 6 (((𝑃𝐴) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
3228, 30, 8, 31syl3anc 1373 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) ∧ (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) → (𝑃𝐴) ∥ 𝑁))
3323, 32mpan2d 694 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃𝐴) ∥ (𝑃↑(𝑃 pCnt 𝑁)) → (𝑃𝐴) ∥ 𝑁))
3421, 33syld 47 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) → (𝑃𝐴) ∥ 𝑁))
35 nn0re 12411 . . . . . . 7 ((𝑃 pCnt 𝑁) ∈ ℕ0 → (𝑃 pCnt 𝑁) ∈ ℝ)
36 nn0re 12411 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
37 ltnle 11213 . . . . . . 7 (((𝑃 pCnt 𝑁) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
3835, 36, 37syl2an 596 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ¬ 𝐴 ≤ (𝑃 pCnt 𝑁)))
39 nn0ltp1le 12552 . . . . . 6 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑃 pCnt 𝑁) < 𝐴 ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4038, 39bitr3d 281 . . . . 5 (((𝑃 pCnt 𝑁) ∈ ℕ0𝐴 ∈ ℕ0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4111, 5, 40syl2anc 584 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
42 peano2nn0 12442 . . . . . . . . 9 ((𝑃 pCnt 𝑁) ∈ ℕ0 → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
4311, 42syl 17 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0)
4443nn0zd 12515 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃 pCnt 𝑁) + 1) ∈ ℤ)
45 eluz 12767 . . . . . . 7 ((((𝑃 pCnt 𝑁) + 1) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
4644, 6, 45syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) ↔ ((𝑃 pCnt 𝑁) + 1) ≤ 𝐴))
47 dvdsexp 16257 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1))) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴))
48473expia 1121 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((𝑃 pCnt 𝑁) + 1) ∈ ℕ0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
4917, 43, 48syl2anc 584 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ∈ (ℤ‘((𝑃 pCnt 𝑁) + 1)) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
5046, 49sylbird 260 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴)))
51 pczndvds 16795 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
527, 8, 9, 51syl12anc 836 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁)
5316, 43nnexpcld 14170 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℕ)
5453nnzd 12516 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ)
55 dvdstr 16223 . . . . . . . 8 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∈ ℤ ∧ (𝑃𝐴) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
5654, 28, 8, 55syl3anc 1373 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁) → (𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ 𝑁))
5752, 56mtod 198 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
58 imnan 399 . . . . . 6 (((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁) ↔ ¬ ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) ∧ (𝑃𝐴) ∥ 𝑁))
5957, 58sylibr 234 . . . . 5 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → ((𝑃↑((𝑃 pCnt 𝑁) + 1)) ∥ (𝑃𝐴) → ¬ (𝑃𝐴) ∥ 𝑁))
6050, 59syld 47 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (((𝑃 pCnt 𝑁) + 1) ≤ 𝐴 → ¬ (𝑃𝐴) ∥ 𝑁))
6141, 60sylbid 240 . . 3 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (¬ 𝐴 ≤ (𝑃 pCnt 𝑁) → ¬ (𝑃𝐴) ∥ 𝑁))
6234, 61impcon4bid 227 . 2 (((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) ∧ 𝑁 ≠ 0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
63363ad2ant3 1135 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ)
6463rexrd 11184 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ∈ ℝ*)
65 pnfge 13050 . . . . 5 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
6664, 65syl 17 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ +∞)
67 pc0 16784 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 0) = +∞)
68673ad2ant1 1133 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃 pCnt 0) = +∞)
6966, 68breqtrrd 5123 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → 𝐴 ≤ (𝑃 pCnt 0))
70 dvds0 16200 . . . 4 ((𝑃𝐴) ∈ ℤ → (𝑃𝐴) ∥ 0)
7127, 70syl 17 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝑃𝐴) ∥ 0)
7269, 712thd 265 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 0) ↔ (𝑃𝐴) ∥ 0))
734, 62, 72pm2.61ne 3010 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑃 pCnt 𝑁) ↔ (𝑃𝐴) ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cn 12146  0cn0 12402  cz 12489  cuz 12753  cexp 13986  cdvds 16181  cprime 16600   pCnt cpc 16766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767
This theorem is referenced by:  pcelnn  16800  pcidlem  16802  pcdvdstr  16806  pcgcd1  16807  pcfac  16829  pockthlem  16835  pockthg  16836  prmreclem2  16847  sylow1lem1  19495  sylow1lem3  19497  sylow1lem5  19499  ablfac1c  19970  ablfac1eu  19972  issqf  27062  vmasum  27143
  Copyright terms: Public domain W3C validator