| Step | Hyp | Ref
| Expression |
| 1 | | simprl 770 |
. . . . 5
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–onto→𝐵) |
| 2 | | fof 6790 |
. . . . 5
⊢ (𝐻:𝐴–onto→𝐵 → 𝐻:𝐴⟶𝐵) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴⟶𝐵) |
| 4 | | sotrieq 5592 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎 = 𝑏 ↔ ¬ (𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎))) |
| 5 | 4 | con2bid 354 |
. . . . . . . 8
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏)) |
| 6 | 5 | ad4ant14 752 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏)) |
| 7 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
| 8 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑥𝑅𝑦 ↔ 𝑎𝑅𝑦)) |
| 9 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝐻‘𝑥) = (𝐻‘𝑎)) |
| 10 | 9 | breq1d 5129 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑦))) |
| 11 | 8, 10 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑎𝑅𝑦 → (𝐻‘𝑎)𝑆(𝐻‘𝑦)))) |
| 12 | | breq2 5123 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → (𝑎𝑅𝑦 ↔ 𝑎𝑅𝑏)) |
| 13 | | fveq2 6876 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑏 → (𝐻‘𝑦) = (𝐻‘𝑏)) |
| 14 | 13 | breq2d 5131 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → ((𝐻‘𝑎)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 15 | 12, 14 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ((𝑎𝑅𝑦 → (𝐻‘𝑎)𝑆(𝐻‘𝑦)) ↔ (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
| 16 | 11, 15 | rspc2va 3613 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 17 | 16 | ancoms 458 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 18 | 7, 17 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 19 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑆 Po 𝐵) |
| 20 | | simplrl 776 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝐻:𝐴–onto→𝐵) |
| 21 | 20, 2 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝐻:𝐴⟶𝐵) |
| 22 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏 ∈ 𝐴) |
| 23 | 21, 22 | ffvelcdmd 7075 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐻‘𝑏) ∈ 𝐵) |
| 24 | | poirr 5573 |
. . . . . . . . . . . 12
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏)) |
| 25 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
| 26 | 25 | notbid 318 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → (¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
| 27 | 24, 26 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 28 | 19, 23, 27 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 29 | 28 | con2d 134 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
| 30 | 18, 29 | syld 47 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
| 31 | | breq1 5122 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → (𝑥𝑅𝑦 ↔ 𝑏𝑅𝑦)) |
| 32 | | fveq2 6876 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑏 → (𝐻‘𝑥) = (𝐻‘𝑏)) |
| 33 | 32 | breq1d 5129 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑦))) |
| 34 | 31, 33 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑏 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑏𝑅𝑦 → (𝐻‘𝑏)𝑆(𝐻‘𝑦)))) |
| 35 | | breq2 5123 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝑏𝑅𝑦 ↔ 𝑏𝑅𝑎)) |
| 36 | | fveq2 6876 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (𝐻‘𝑦) = (𝐻‘𝑎)) |
| 37 | 36 | breq2d 5131 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((𝐻‘𝑏)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
| 38 | 35, 37 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑎 → ((𝑏𝑅𝑦 → (𝐻‘𝑏)𝑆(𝐻‘𝑦)) ↔ (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎)))) |
| 39 | 34, 38 | rspc2va 3613 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
| 40 | 39 | ancoms 458 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
| 41 | 40 | ancom2s 650 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
| 42 | 7, 41 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
| 43 | | breq2 5123 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
| 44 | 43 | notbid 318 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → (¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
| 45 | 24, 44 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
| 46 | 19, 23, 45 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
| 47 | 46 | con2d 134 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
| 48 | 42, 47 | syld 47 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
| 49 | 30, 48 | jaod 859 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
| 50 | 6, 49 | sylbird 260 |
. . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (¬ 𝑎 = 𝑏 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
| 51 | 50 | con4d 115 |
. . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏)) |
| 52 | 51 | ralrimivva 3187 |
. . . 4
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏)) |
| 53 | | dff13 7247 |
. . . 4
⊢ (𝐻:𝐴–1-1→𝐵 ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏))) |
| 54 | 3, 52, 53 | sylanbrc 583 |
. . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–1-1→𝐵) |
| 55 | | df-f1o 6538 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1→𝐵 ∧ 𝐻:𝐴–onto→𝐵)) |
| 56 | 54, 1, 55 | sylanbrc 583 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–1-1-onto→𝐵) |
| 57 | | sotric 5591 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏 ∨ 𝑏𝑅𝑎))) |
| 58 | 57 | con2bid 354 |
. . . . . 6
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏)) |
| 59 | 58 | ad4ant14 752 |
. . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏)) |
| 60 | | fveq2 6876 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝐻‘𝑎) = (𝐻‘𝑏)) |
| 61 | 60 | breq1d 5129 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
| 62 | 61 | notbid 318 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
| 63 | 24, 62 | syl5ibrcom 247 |
. . . . . . 7
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → (𝑎 = 𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 64 | 19, 23, 63 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎 = 𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 65 | | simprl 770 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑎 ∈ 𝐴) |
| 66 | 21, 65 | ffvelcdmd 7075 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐻‘𝑎) ∈ 𝐵) |
| 67 | | po2nr 5575 |
. . . . . . . . 9
⊢ ((𝑆 Po 𝐵 ∧ ((𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑎) ∈ 𝐵)) → ¬ ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ∧ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 68 | | imnan 399 |
. . . . . . . . 9
⊢ (((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) ↔ ¬ ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ∧ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 69 | 67, 68 | sylibr 234 |
. . . . . . . 8
⊢ ((𝑆 Po 𝐵 ∧ ((𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑎) ∈ 𝐵)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 70 | 19, 23, 66, 69 | syl12anc 836 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 71 | 42, 70 | syld 47 |
. . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 72 | 64, 71 | jaod 859 |
. . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 73 | 59, 72 | sylbird 260 |
. . . 4
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (¬ 𝑎𝑅𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 74 | 18, 73 | impcon4bid 227 |
. . 3
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 75 | 74 | ralrimivva 3187 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
| 76 | | df-isom 6540 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
| 77 | 56, 75, 76 | sylanbrc 583 |
1
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |