MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soisoi Structured version   Visualization version   GIF version

Theorem soisoi 7083
Description: Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
soisoi (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem soisoi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . . 5 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴onto𝐵)
2 fof 6592 . . . . 5 (𝐻:𝐴onto𝐵𝐻:𝐴𝐵)
31, 2syl 17 . . . 4 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴𝐵)
4 sotrieq 5504 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎 = 𝑏 ↔ ¬ (𝑎𝑅𝑏𝑏𝑅𝑎)))
54con2bid 357 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏))
65ad4ant14 750 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏))
7 simprr 771 . . . . . . . . . 10 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))
8 breq1 5071 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥𝑅𝑦𝑎𝑅𝑦))
9 fveq2 6672 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝐻𝑥) = (𝐻𝑎))
109breq1d 5078 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑎)𝑆(𝐻𝑦)))
118, 10imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑎𝑅𝑦 → (𝐻𝑎)𝑆(𝐻𝑦))))
12 breq2 5072 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (𝑎𝑅𝑦𝑎𝑅𝑏))
13 fveq2 6672 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝐻𝑦) = (𝐻𝑏))
1413breq2d 5080 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → ((𝐻𝑎)𝑆(𝐻𝑦) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1512, 14imbi12d 347 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ((𝑎𝑅𝑦 → (𝐻𝑎)𝑆(𝐻𝑦)) ↔ (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏))))
1611, 15rspc2va 3636 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
1716ancoms 461 . . . . . . . . . 10 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
187, 17sylan 582 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
19 simpllr 774 . . . . . . . . . . 11 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑆 Po 𝐵)
20 simplrl 775 . . . . . . . . . . . . 13 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝐻:𝐴onto𝐵)
2120, 2syl 17 . . . . . . . . . . . 12 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝐻:𝐴𝐵)
22 simprr 771 . . . . . . . . . . . 12 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝐴)
2321, 22ffvelrnd 6854 . . . . . . . . . . 11 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝐻𝑏) ∈ 𝐵)
24 poirr 5487 . . . . . . . . . . . 12 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ¬ (𝐻𝑏)𝑆(𝐻𝑏))
25 breq1 5071 . . . . . . . . . . . . 13 ((𝐻𝑎) = (𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑏) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
2625notbid 320 . . . . . . . . . . . 12 ((𝐻𝑎) = (𝐻𝑏) → (¬ (𝐻𝑎)𝑆(𝐻𝑏) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
2724, 26syl5ibrcom 249 . . . . . . . . . . 11 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
2819, 23, 27syl2anc 586 . . . . . . . . . 10 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
2928con2d 136 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ¬ (𝐻𝑎) = (𝐻𝑏)))
3018, 29syld 47 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → ¬ (𝐻𝑎) = (𝐻𝑏)))
31 breq1 5071 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → (𝑥𝑅𝑦𝑏𝑅𝑦))
32 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝐻𝑥) = (𝐻𝑏))
3332breq1d 5078 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑏)𝑆(𝐻𝑦)))
3431, 33imbi12d 347 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑏𝑅𝑦 → (𝐻𝑏)𝑆(𝐻𝑦))))
35 breq2 5072 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝑏𝑅𝑦𝑏𝑅𝑎))
36 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (𝐻𝑦) = (𝐻𝑎))
3736breq2d 5080 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝐻𝑏)𝑆(𝐻𝑦) ↔ (𝐻𝑏)𝑆(𝐻𝑎)))
3835, 37imbi12d 347 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → ((𝑏𝑅𝑦 → (𝐻𝑏)𝑆(𝐻𝑦)) ↔ (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎))))
3934, 38rspc2va 3636 . . . . . . . . . . . 12 (((𝑏𝐴𝑎𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
4039ancoms 461 . . . . . . . . . . 11 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑏𝐴𝑎𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
4140ancom2s 648 . . . . . . . . . 10 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
427, 41sylan 582 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
43 breq2 5072 . . . . . . . . . . . . 13 ((𝐻𝑎) = (𝐻𝑏) → ((𝐻𝑏)𝑆(𝐻𝑎) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
4443notbid 320 . . . . . . . . . . . 12 ((𝐻𝑎) = (𝐻𝑏) → (¬ (𝐻𝑏)𝑆(𝐻𝑎) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
4524, 44syl5ibrcom 249 . . . . . . . . . . 11 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑏)𝑆(𝐻𝑎)))
4619, 23, 45syl2anc 586 . . . . . . . . . 10 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑏)𝑆(𝐻𝑎)))
4746con2d 136 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎) = (𝐻𝑏)))
4842, 47syld 47 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻𝑎) = (𝐻𝑏)))
4930, 48jaod 855 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) → ¬ (𝐻𝑎) = (𝐻𝑏)))
506, 49sylbird 262 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎 = 𝑏 → ¬ (𝐻𝑎) = (𝐻𝑏)))
5150con4d 115 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏))
5251ralrimivva 3193 . . . 4 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑎𝐴𝑏𝐴 ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏))
53 dff13 7015 . . . 4 (𝐻:𝐴1-1𝐵 ↔ (𝐻:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏)))
543, 52, 53sylanbrc 585 . . 3 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴1-1𝐵)
55 df-f1o 6364 . . 3 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1𝐵𝐻:𝐴onto𝐵))
5654, 1, 55sylanbrc 585 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴1-1-onto𝐵)
57 sotric 5503 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏𝑏𝑅𝑎)))
5857con2bid 357 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏))
5958ad4ant14 750 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏))
60 fveq2 6672 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
6160breq1d 5078 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝐻𝑎)𝑆(𝐻𝑏) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
6261notbid 320 . . . . . . . 8 (𝑎 = 𝑏 → (¬ (𝐻𝑎)𝑆(𝐻𝑏) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
6324, 62syl5ibrcom 249 . . . . . . 7 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → (𝑎 = 𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
6419, 23, 63syl2anc 586 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎 = 𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
65 simprl 769 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑎𝐴)
6621, 65ffvelrnd 6854 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝐻𝑎) ∈ 𝐵)
67 po2nr 5489 . . . . . . . . 9 ((𝑆 Po 𝐵 ∧ ((𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑎) ∈ 𝐵)) → ¬ ((𝐻𝑏)𝑆(𝐻𝑎) ∧ (𝐻𝑎)𝑆(𝐻𝑏)))
68 imnan 402 . . . . . . . . 9 (((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)) ↔ ¬ ((𝐻𝑏)𝑆(𝐻𝑎) ∧ (𝐻𝑎)𝑆(𝐻𝑏)))
6967, 68sylibr 236 . . . . . . . 8 ((𝑆 Po 𝐵 ∧ ((𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑎) ∈ 𝐵)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7019, 23, 66, 69syl12anc 834 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7142, 70syld 47 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7264, 71jaod 855 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7359, 72sylbird 262 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎𝑅𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7418, 73impcon4bid 229 . . 3 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
7574ralrimivva 3193 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
76 df-isom 6366 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
7756, 75, 76sylanbrc 585 1 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140   class class class wbr 5068   Po wpo 5474   Or wor 5475  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357   Isom wiso 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366
This theorem is referenced by:  ordtypelem8  8991  cantnf  9158  fin23lem27  9752  iccpnfhmeo  23551  xrhmeo  23552  logccv  25248  xrge0iifiso  31180
  Copyright terms: Public domain W3C validator