| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprl 771 | . . . . 5
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–onto→𝐵) | 
| 2 |  | fof 6820 | . . . . 5
⊢ (𝐻:𝐴–onto→𝐵 → 𝐻:𝐴⟶𝐵) | 
| 3 | 1, 2 | syl 17 | . . . 4
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴⟶𝐵) | 
| 4 |  | sotrieq 5623 | . . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎 = 𝑏 ↔ ¬ (𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎))) | 
| 5 | 4 | con2bid 354 | . . . . . . . 8
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏)) | 
| 6 | 5 | ad4ant14 752 | . . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏)) | 
| 7 |  | simprr 773 | . . . . . . . . . 10
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) | 
| 8 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑥𝑅𝑦 ↔ 𝑎𝑅𝑦)) | 
| 9 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝐻‘𝑥) = (𝐻‘𝑎)) | 
| 10 | 9 | breq1d 5153 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑦))) | 
| 11 | 8, 10 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑎𝑅𝑦 → (𝐻‘𝑎)𝑆(𝐻‘𝑦)))) | 
| 12 |  | breq2 5147 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → (𝑎𝑅𝑦 ↔ 𝑎𝑅𝑏)) | 
| 13 |  | fveq2 6906 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑏 → (𝐻‘𝑦) = (𝐻‘𝑏)) | 
| 14 | 13 | breq2d 5155 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → ((𝐻‘𝑎)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 15 | 12, 14 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ((𝑎𝑅𝑦 → (𝐻‘𝑎)𝑆(𝐻‘𝑦)) ↔ (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) | 
| 16 | 11, 15 | rspc2va 3634 | . . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 17 | 16 | ancoms 458 | . . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 18 | 7, 17 | sylan 580 | . . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 19 |  | simpllr 776 | . . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑆 Po 𝐵) | 
| 20 |  | simplrl 777 | . . . . . . . . . . . . 13
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝐻:𝐴–onto→𝐵) | 
| 21 | 20, 2 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝐻:𝐴⟶𝐵) | 
| 22 |  | simprr 773 | . . . . . . . . . . . 12
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏 ∈ 𝐴) | 
| 23 | 21, 22 | ffvelcdmd 7105 | . . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐻‘𝑏) ∈ 𝐵) | 
| 24 |  | poirr 5604 | . . . . . . . . . . . 12
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏)) | 
| 25 |  | breq1 5146 | . . . . . . . . . . . . 13
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) | 
| 26 | 25 | notbid 318 | . . . . . . . . . . . 12
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → (¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) | 
| 27 | 24, 26 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 28 | 19, 23, 27 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 29 | 28 | con2d 134 | . . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) | 
| 30 | 18, 29 | syld 47 | . . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) | 
| 31 |  | breq1 5146 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → (𝑥𝑅𝑦 ↔ 𝑏𝑅𝑦)) | 
| 32 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑏 → (𝐻‘𝑥) = (𝐻‘𝑏)) | 
| 33 | 32 | breq1d 5153 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑦))) | 
| 34 | 31, 33 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑏 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑏𝑅𝑦 → (𝐻‘𝑏)𝑆(𝐻‘𝑦)))) | 
| 35 |  | breq2 5147 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝑏𝑅𝑦 ↔ 𝑏𝑅𝑎)) | 
| 36 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (𝐻‘𝑦) = (𝐻‘𝑎)) | 
| 37 | 36 | breq2d 5155 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((𝐻‘𝑏)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) | 
| 38 | 35, 37 | imbi12d 344 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑎 → ((𝑏𝑅𝑦 → (𝐻‘𝑏)𝑆(𝐻‘𝑦)) ↔ (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎)))) | 
| 39 | 34, 38 | rspc2va 3634 | . . . . . . . . . . . 12
⊢ (((𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) | 
| 40 | 39 | ancoms 458 | . . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) | 
| 41 | 40 | ancom2s 650 | . . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) | 
| 42 | 7, 41 | sylan 580 | . . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) | 
| 43 |  | breq2 5147 | . . . . . . . . . . . . 13
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) | 
| 44 | 43 | notbid 318 | . . . . . . . . . . . 12
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → (¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) | 
| 45 | 24, 44 | syl5ibrcom 247 | . . . . . . . . . . 11
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) | 
| 46 | 19, 23, 45 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) | 
| 47 | 46 | con2d 134 | . . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) | 
| 48 | 42, 47 | syld 47 | . . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) | 
| 49 | 30, 48 | jaod 860 | . . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) | 
| 50 | 6, 49 | sylbird 260 | . . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (¬ 𝑎 = 𝑏 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) | 
| 51 | 50 | con4d 115 | . . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏)) | 
| 52 | 51 | ralrimivva 3202 | . . . 4
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏)) | 
| 53 |  | dff13 7275 | . . . 4
⊢ (𝐻:𝐴–1-1→𝐵 ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏))) | 
| 54 | 3, 52, 53 | sylanbrc 583 | . . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–1-1→𝐵) | 
| 55 |  | df-f1o 6568 | . . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1→𝐵 ∧ 𝐻:𝐴–onto→𝐵)) | 
| 56 | 54, 1, 55 | sylanbrc 583 | . 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–1-1-onto→𝐵) | 
| 57 |  | sotric 5622 | . . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏 ∨ 𝑏𝑅𝑎))) | 
| 58 | 57 | con2bid 354 | . . . . . 6
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏)) | 
| 59 | 58 | ad4ant14 752 | . . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏)) | 
| 60 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝐻‘𝑎) = (𝐻‘𝑏)) | 
| 61 | 60 | breq1d 5153 | . . . . . . . . 9
⊢ (𝑎 = 𝑏 → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) | 
| 62 | 61 | notbid 318 | . . . . . . . 8
⊢ (𝑎 = 𝑏 → (¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) | 
| 63 | 24, 62 | syl5ibrcom 247 | . . . . . . 7
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → (𝑎 = 𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 64 | 19, 23, 63 | syl2anc 584 | . . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎 = 𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 65 |  | simprl 771 | . . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑎 ∈ 𝐴) | 
| 66 | 21, 65 | ffvelcdmd 7105 | . . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐻‘𝑎) ∈ 𝐵) | 
| 67 |  | po2nr 5606 | . . . . . . . . 9
⊢ ((𝑆 Po 𝐵 ∧ ((𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑎) ∈ 𝐵)) → ¬ ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ∧ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 68 |  | imnan 399 | . . . . . . . . 9
⊢ (((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) ↔ ¬ ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ∧ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 69 | 67, 68 | sylibr 234 | . . . . . . . 8
⊢ ((𝑆 Po 𝐵 ∧ ((𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑎) ∈ 𝐵)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 70 | 19, 23, 66, 69 | syl12anc 837 | . . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 71 | 42, 70 | syld 47 | . . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 72 | 64, 71 | jaod 860 | . . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 73 | 59, 72 | sylbird 260 | . . . 4
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (¬ 𝑎𝑅𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 74 | 18, 73 | impcon4bid 227 | . . 3
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 75 | 74 | ralrimivva 3202 | . 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) | 
| 76 |  | df-isom 6570 | . 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) | 
| 77 | 56, 75, 76 | sylanbrc 583 | 1
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |