Step | Hyp | Ref
| Expression |
1 | | simprl 770 |
. . . . 5
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–onto→𝐵) |
2 | | fof 6576 |
. . . . 5
⊢ (𝐻:𝐴–onto→𝐵 → 𝐻:𝐴⟶𝐵) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴⟶𝐵) |
4 | | sotrieq 5471 |
. . . . . . . . 9
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎 = 𝑏 ↔ ¬ (𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎))) |
5 | 4 | con2bid 358 |
. . . . . . . 8
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏)) |
6 | 5 | ad4ant14 751 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏)) |
7 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) |
8 | | breq1 5035 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → (𝑥𝑅𝑦 ↔ 𝑎𝑅𝑦)) |
9 | | fveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → (𝐻‘𝑥) = (𝐻‘𝑎)) |
10 | 9 | breq1d 5042 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑎 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑦))) |
11 | 8, 10 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑎 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑎𝑅𝑦 → (𝐻‘𝑎)𝑆(𝐻‘𝑦)))) |
12 | | breq2 5036 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → (𝑎𝑅𝑦 ↔ 𝑎𝑅𝑏)) |
13 | | fveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑏 → (𝐻‘𝑦) = (𝐻‘𝑏)) |
14 | 13 | breq2d 5044 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → ((𝐻‘𝑎)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
15 | 12, 14 | imbi12d 348 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → ((𝑎𝑅𝑦 → (𝐻‘𝑎)𝑆(𝐻‘𝑦)) ↔ (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
16 | 11, 15 | rspc2va 3552 |
. . . . . . . . . . 11
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
17 | 16 | ancoms 462 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
18 | 7, 17 | sylan 583 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
19 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑆 Po 𝐵) |
20 | | simplrl 776 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝐻:𝐴–onto→𝐵) |
21 | 20, 2 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝐻:𝐴⟶𝐵) |
22 | | simprr 772 |
. . . . . . . . . . . 12
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑏 ∈ 𝐴) |
23 | 21, 22 | ffvelrnd 6843 |
. . . . . . . . . . 11
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐻‘𝑏) ∈ 𝐵) |
24 | | poirr 5454 |
. . . . . . . . . . . 12
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏)) |
25 | | breq1 5035 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
26 | 25 | notbid 321 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → (¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
27 | 24, 26 | syl5ibrcom 250 |
. . . . . . . . . . 11
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
28 | 19, 23, 27 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
29 | 28 | con2d 136 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
30 | 18, 29 | syld 47 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
31 | | breq1 5035 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → (𝑥𝑅𝑦 ↔ 𝑏𝑅𝑦)) |
32 | | fveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑏 → (𝐻‘𝑥) = (𝐻‘𝑏)) |
33 | 32 | breq1d 5042 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑏 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑦))) |
34 | 31, 33 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑏 → ((𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑏𝑅𝑦 → (𝐻‘𝑏)𝑆(𝐻‘𝑦)))) |
35 | | breq2 5036 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝑏𝑅𝑦 ↔ 𝑏𝑅𝑎)) |
36 | | fveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (𝐻‘𝑦) = (𝐻‘𝑎)) |
37 | 36 | breq2d 5044 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((𝐻‘𝑏)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
38 | 35, 37 | imbi12d 348 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑎 → ((𝑏𝑅𝑦 → (𝐻‘𝑏)𝑆(𝐻‘𝑦)) ↔ (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎)))) |
39 | 34, 38 | rspc2va 3552 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
40 | 39 | ancoms 462 |
. . . . . . . . . . 11
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
41 | 40 | ancom2s 649 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
42 | 7, 41 | sylan 583 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
43 | | breq2 5036 |
. . . . . . . . . . . . 13
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
44 | 43 | notbid 321 |
. . . . . . . . . . . 12
⊢ ((𝐻‘𝑎) = (𝐻‘𝑏) → (¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
45 | 24, 44 | syl5ibrcom 250 |
. . . . . . . . . . 11
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
46 | 19, 23, 45 | syl2anc 587 |
. . . . . . . . . 10
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑎))) |
47 | 46 | con2d 136 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
48 | 42, 47 | syld 47 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
49 | 30, 48 | jaod 856 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎𝑅𝑏 ∨ 𝑏𝑅𝑎) → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
50 | 6, 49 | sylbird 263 |
. . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (¬ 𝑎 = 𝑏 → ¬ (𝐻‘𝑎) = (𝐻‘𝑏))) |
51 | 50 | con4d 115 |
. . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏)) |
52 | 51 | ralrimivva 3120 |
. . . 4
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏)) |
53 | | dff13 7005 |
. . . 4
⊢ (𝐻:𝐴–1-1→𝐵 ↔ (𝐻:𝐴⟶𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ((𝐻‘𝑎) = (𝐻‘𝑏) → 𝑎 = 𝑏))) |
54 | 3, 52, 53 | sylanbrc 586 |
. . 3
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–1-1→𝐵) |
55 | | df-f1o 6342 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1→𝐵 ∧ 𝐻:𝐴–onto→𝐵)) |
56 | 54, 1, 55 | sylanbrc 586 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻:𝐴–1-1-onto→𝐵) |
57 | | sotric 5470 |
. . . . . . 7
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏 ∨ 𝑏𝑅𝑎))) |
58 | 57 | con2bid 358 |
. . . . . 6
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏)) |
59 | 58 | ad4ant14 751 |
. . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏)) |
60 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝐻‘𝑎) = (𝐻‘𝑏)) |
61 | 60 | breq1d 5042 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → ((𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
62 | 61 | notbid 321 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏) ↔ ¬ (𝐻‘𝑏)𝑆(𝐻‘𝑏))) |
63 | 24, 62 | syl5ibrcom 250 |
. . . . . . 7
⊢ ((𝑆 Po 𝐵 ∧ (𝐻‘𝑏) ∈ 𝐵) → (𝑎 = 𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
64 | 19, 23, 63 | syl2anc 587 |
. . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎 = 𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
65 | | simprl 770 |
. . . . . . . . 9
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → 𝑎 ∈ 𝐴) |
66 | 21, 65 | ffvelrnd 6843 |
. . . . . . . 8
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝐻‘𝑎) ∈ 𝐵) |
67 | | po2nr 5456 |
. . . . . . . . 9
⊢ ((𝑆 Po 𝐵 ∧ ((𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑎) ∈ 𝐵)) → ¬ ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ∧ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
68 | | imnan 403 |
. . . . . . . . 9
⊢ (((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏)) ↔ ¬ ((𝐻‘𝑏)𝑆(𝐻‘𝑎) ∧ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
69 | 67, 68 | sylibr 237 |
. . . . . . . 8
⊢ ((𝑆 Po 𝐵 ∧ ((𝐻‘𝑏) ∈ 𝐵 ∧ (𝐻‘𝑎) ∈ 𝐵)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
70 | 19, 23, 66, 69 | syl12anc 835 |
. . . . . . 7
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝐻‘𝑏)𝑆(𝐻‘𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
71 | 42, 70 | syld 47 |
. . . . . 6
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
72 | 64, 71 | jaod 856 |
. . . . 5
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → ((𝑎 = 𝑏 ∨ 𝑏𝑅𝑎) → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
73 | 59, 72 | sylbird 263 |
. . . 4
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (¬ 𝑎𝑅𝑏 → ¬ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
74 | 18, 73 | impcon4bid 230 |
. . 3
⊢ ((((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
75 | 74 | ralrimivva 3120 |
. 2
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏))) |
76 | | df-isom 6344 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 (𝑎𝑅𝑏 ↔ (𝐻‘𝑎)𝑆(𝐻‘𝑏)))) |
77 | 56, 75, 76 | sylanbrc 586 |
1
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |