MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soisoi Structured version   Visualization version   GIF version

Theorem soisoi 7325
Description: Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Assertion
Ref Expression
soisoi (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem soisoi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . 5 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴onto𝐵)
2 fof 6806 . . . . 5 (𝐻:𝐴onto𝐵𝐻:𝐴𝐵)
31, 2syl 17 . . . 4 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴𝐵)
4 sotrieq 5618 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎 = 𝑏 ↔ ¬ (𝑎𝑅𝑏𝑏𝑅𝑎)))
54con2bid 355 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏))
65ad4ant14 751 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎 = 𝑏))
7 simprr 772 . . . . . . . . . 10 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))
8 breq1 5152 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → (𝑥𝑅𝑦𝑎𝑅𝑦))
9 fveq2 6892 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (𝐻𝑥) = (𝐻𝑎))
109breq1d 5159 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑎)𝑆(𝐻𝑦)))
118, 10imbi12d 345 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑎𝑅𝑦 → (𝐻𝑎)𝑆(𝐻𝑦))))
12 breq2 5153 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (𝑎𝑅𝑦𝑎𝑅𝑏))
13 fveq2 6892 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝐻𝑦) = (𝐻𝑏))
1413breq2d 5161 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → ((𝐻𝑎)𝑆(𝐻𝑦) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1512, 14imbi12d 345 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ((𝑎𝑅𝑦 → (𝐻𝑎)𝑆(𝐻𝑦)) ↔ (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏))))
1611, 15rspc2va 3624 . . . . . . . . . . 11 (((𝑎𝐴𝑏𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
1716ancoms 460 . . . . . . . . . 10 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
187, 17sylan 581 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (𝐻𝑎)𝑆(𝐻𝑏)))
19 simpllr 775 . . . . . . . . . . 11 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑆 Po 𝐵)
20 simplrl 776 . . . . . . . . . . . . 13 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝐻:𝐴onto𝐵)
2120, 2syl 17 . . . . . . . . . . . 12 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝐻:𝐴𝐵)
22 simprr 772 . . . . . . . . . . . 12 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑏𝐴)
2321, 22ffvelcdmd 7088 . . . . . . . . . . 11 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝐻𝑏) ∈ 𝐵)
24 poirr 5601 . . . . . . . . . . . 12 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ¬ (𝐻𝑏)𝑆(𝐻𝑏))
25 breq1 5152 . . . . . . . . . . . . 13 ((𝐻𝑎) = (𝐻𝑏) → ((𝐻𝑎)𝑆(𝐻𝑏) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
2625notbid 318 . . . . . . . . . . . 12 ((𝐻𝑎) = (𝐻𝑏) → (¬ (𝐻𝑎)𝑆(𝐻𝑏) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
2724, 26syl5ibrcom 246 . . . . . . . . . . 11 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
2819, 23, 27syl2anc 585 . . . . . . . . . 10 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
2928con2d 134 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎)𝑆(𝐻𝑏) → ¬ (𝐻𝑎) = (𝐻𝑏)))
3018, 29syld 47 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → ¬ (𝐻𝑎) = (𝐻𝑏)))
31 breq1 5152 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → (𝑥𝑅𝑦𝑏𝑅𝑦))
32 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑥 = 𝑏 → (𝐻𝑥) = (𝐻𝑏))
3332breq1d 5159 . . . . . . . . . . . . . 14 (𝑥 = 𝑏 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑏)𝑆(𝐻𝑦)))
3431, 33imbi12d 345 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → ((𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑏𝑅𝑦 → (𝐻𝑏)𝑆(𝐻𝑦))))
35 breq2 5153 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝑏𝑅𝑦𝑏𝑅𝑎))
36 fveq2 6892 . . . . . . . . . . . . . . 15 (𝑦 = 𝑎 → (𝐻𝑦) = (𝐻𝑎))
3736breq2d 5161 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → ((𝐻𝑏)𝑆(𝐻𝑦) ↔ (𝐻𝑏)𝑆(𝐻𝑎)))
3835, 37imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → ((𝑏𝑅𝑦 → (𝐻𝑏)𝑆(𝐻𝑦)) ↔ (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎))))
3934, 38rspc2va 3624 . . . . . . . . . . . 12 (((𝑏𝐴𝑎𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦))) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
4039ancoms 460 . . . . . . . . . . 11 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑏𝐴𝑎𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
4140ancom2s 649 . . . . . . . . . 10 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
427, 41sylan 581 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → (𝐻𝑏)𝑆(𝐻𝑎)))
43 breq2 5153 . . . . . . . . . . . . 13 ((𝐻𝑎) = (𝐻𝑏) → ((𝐻𝑏)𝑆(𝐻𝑎) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
4443notbid 318 . . . . . . . . . . . 12 ((𝐻𝑎) = (𝐻𝑏) → (¬ (𝐻𝑏)𝑆(𝐻𝑎) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
4524, 44syl5ibrcom 246 . . . . . . . . . . 11 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑏)𝑆(𝐻𝑎)))
4619, 23, 45syl2anc 585 . . . . . . . . . 10 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → ¬ (𝐻𝑏)𝑆(𝐻𝑎)))
4746con2d 134 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎) = (𝐻𝑏)))
4842, 47syld 47 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻𝑎) = (𝐻𝑏)))
4930, 48jaod 858 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎𝑅𝑏𝑏𝑅𝑎) → ¬ (𝐻𝑎) = (𝐻𝑏)))
506, 49sylbird 260 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎 = 𝑏 → ¬ (𝐻𝑎) = (𝐻𝑏)))
5150con4d 115 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏))
5251ralrimivva 3201 . . . 4 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑎𝐴𝑏𝐴 ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏))
53 dff13 7254 . . . 4 (𝐻:𝐴1-1𝐵 ↔ (𝐻:𝐴𝐵 ∧ ∀𝑎𝐴𝑏𝐴 ((𝐻𝑎) = (𝐻𝑏) → 𝑎 = 𝑏)))
543, 52, 53sylanbrc 584 . . 3 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴1-1𝐵)
55 df-f1o 6551 . . 3 (𝐻:𝐴1-1-onto𝐵 ↔ (𝐻:𝐴1-1𝐵𝐻:𝐴onto𝐵))
5654, 1, 55sylanbrc 584 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻:𝐴1-1-onto𝐵)
57 sotric 5617 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ ¬ (𝑎 = 𝑏𝑏𝑅𝑎)))
5857con2bid 355 . . . . . 6 ((𝑅 Or 𝐴 ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏))
5958ad4ant14 751 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) ↔ ¬ 𝑎𝑅𝑏))
60 fveq2 6892 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝐻𝑎) = (𝐻𝑏))
6160breq1d 5159 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝐻𝑎)𝑆(𝐻𝑏) ↔ (𝐻𝑏)𝑆(𝐻𝑏)))
6261notbid 318 . . . . . . . 8 (𝑎 = 𝑏 → (¬ (𝐻𝑎)𝑆(𝐻𝑏) ↔ ¬ (𝐻𝑏)𝑆(𝐻𝑏)))
6324, 62syl5ibrcom 246 . . . . . . 7 ((𝑆 Po 𝐵 ∧ (𝐻𝑏) ∈ 𝐵) → (𝑎 = 𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
6419, 23, 63syl2anc 585 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎 = 𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
65 simprl 770 . . . . . . . . 9 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → 𝑎𝐴)
6621, 65ffvelcdmd 7088 . . . . . . . 8 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝐻𝑎) ∈ 𝐵)
67 po2nr 5603 . . . . . . . . 9 ((𝑆 Po 𝐵 ∧ ((𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑎) ∈ 𝐵)) → ¬ ((𝐻𝑏)𝑆(𝐻𝑎) ∧ (𝐻𝑎)𝑆(𝐻𝑏)))
68 imnan 401 . . . . . . . . 9 (((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)) ↔ ¬ ((𝐻𝑏)𝑆(𝐻𝑎) ∧ (𝐻𝑎)𝑆(𝐻𝑏)))
6967, 68sylibr 233 . . . . . . . 8 ((𝑆 Po 𝐵 ∧ ((𝐻𝑏) ∈ 𝐵 ∧ (𝐻𝑎) ∈ 𝐵)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7019, 23, 66, 69syl12anc 836 . . . . . . 7 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝐻𝑏)𝑆(𝐻𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7142, 70syld 47 . . . . . 6 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑏𝑅𝑎 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7264, 71jaod 858 . . . . 5 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → ((𝑎 = 𝑏𝑏𝑅𝑎) → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7359, 72sylbird 260 . . . 4 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (¬ 𝑎𝑅𝑏 → ¬ (𝐻𝑎)𝑆(𝐻𝑏)))
7418, 73impcon4bid 226 . . 3 ((((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
7574ralrimivva 3201 . 2 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
76 df-isom 6553 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
7756, 75, 76sylanbrc 584 1 (((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3062   class class class wbr 5149   Po wpo 5587   Or wor 5588  wf 6540  1-1wf1 6541  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544   Isom wiso 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553
This theorem is referenced by:  ordtypelem8  9520  cantnf  9688  fin23lem27  10323  iccpnfhmeo  24461  xrhmeo  24462  logccv  26171  xrge0iifiso  32915
  Copyright terms: Public domain W3C validator