Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsconcatb0 Structured version   Visualization version   GIF version

Theorem tfsconcatb0 43357
Description: The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 25-Feb-2025.)
Hypothesis
Ref Expression
tfsconcat.op + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
Assertion
Ref Expression
tfsconcatb0 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 + 𝐵) = 𝐴))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏,𝑥,𝑦,𝑧   𝐶,𝑎,𝑏,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑥,𝑦,𝑧,𝑎,𝑏)

Proof of Theorem tfsconcatb0
StepHypRef Expression
1 fnrel 6670 . . . . . . 7 (𝐵 Fn 𝐷 → Rel 𝐵)
2 reldm0 5938 . . . . . . 7 (Rel 𝐵 → (𝐵 = ∅ ↔ dom 𝐵 = ∅))
31, 2syl 17 . . . . . 6 (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ dom 𝐵 = ∅))
4 fndm 6671 . . . . . . 7 (𝐵 Fn 𝐷 → dom 𝐵 = 𝐷)
54eqeq1d 2739 . . . . . 6 (𝐵 Fn 𝐷 → (dom 𝐵 = ∅ ↔ 𝐷 = ∅))
63, 5bitrd 279 . . . . 5 (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ 𝐷 = ∅))
76ad2antlr 727 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ 𝐷 = ∅))
8 rex0 4360 . . . . . . . . . . 11 ¬ ∃𝑧 ∈ ∅ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))
9 rexeq 3322 . . . . . . . . . . . 12 (𝐷 = ∅ → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧 ∈ ∅ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
109adantl 481 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧 ∈ ∅ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
118, 10mtbiri 327 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → ¬ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))
1211intnand 488 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → ¬ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
1312alrimivv 1928 . . . . . . . 8 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → ∀𝑥𝑦 ¬ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
14 opab0 5559 . . . . . . . 8 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = ∅ ↔ ∀𝑥𝑦 ¬ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))))
1513, 14sylibr 234 . . . . . . 7 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} = ∅)
16 0ss 4400 . . . . . . 7 ∅ ⊆ 𝐴
1715, 16eqsstrdi 4028 . . . . . 6 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴)
1817ex 412 . . . . 5 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 = ∅ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴))
19 df-1o 8506 . . . . . . . . . 10 1o = suc ∅
20 simpl 482 . . . . . . . . . . 11 ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → 𝐷 ∈ On)
21 on0eln0 6440 . . . . . . . . . . . . 13 (𝐷 ∈ On → (∅ ∈ 𝐷𝐷 ≠ ∅))
22 df-ne 2941 . . . . . . . . . . . . 13 (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅)
2321, 22bitrdi 287 . . . . . . . . . . . 12 (𝐷 ∈ On → (∅ ∈ 𝐷 ↔ ¬ 𝐷 = ∅))
2423biimpar 477 . . . . . . . . . . 11 ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → ∅ ∈ 𝐷)
25 onsucss 43279 . . . . . . . . . . 11 (𝐷 ∈ On → (∅ ∈ 𝐷 → suc ∅ ⊆ 𝐷))
2620, 24, 25sylc 65 . . . . . . . . . 10 ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → suc ∅ ⊆ 𝐷)
2719, 26eqsstrid 4022 . . . . . . . . 9 ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → 1o𝐷)
2827ex 412 . . . . . . . 8 (𝐷 ∈ On → (¬ 𝐷 = ∅ → 1o𝐷))
2928adantl 481 . . . . . . 7 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (¬ 𝐷 = ∅ → 1o𝐷))
3029adantl 481 . . . . . 6 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (¬ 𝐷 = ∅ → 1o𝐷))
31 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → 1o𝐷)
32 0lt1o 8542 . . . . . . . . . . . . . 14 ∅ ∈ 1o
3332a1i 11 . . . . . . . . . . . . 13 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → ∅ ∈ 1o)
3431, 33sseldd 3984 . . . . . . . . . . . 12 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → ∅ ∈ 𝐷)
35 oaord1 8589 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (∅ ∈ 𝐷𝐶 ∈ (𝐶 +o 𝐷)))
3635ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (∅ ∈ 𝐷𝐶 ∈ (𝐶 +o 𝐷)))
3734, 36mpbid 232 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → 𝐶 ∈ (𝐶 +o 𝐷))
38 ssidd 4007 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → 𝐶𝐶)
39 oacl 8573 . . . . . . . . . . . . . . 15 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On)
40 eloni 6394 . . . . . . . . . . . . . . 15 ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷))
4139, 40syl 17 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷))
42 eloni 6394 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → Ord 𝐶)
4342adantr 480 . . . . . . . . . . . . . 14 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶)
4441, 43jca 511 . . . . . . . . . . . . 13 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
4544ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶))
46 ordeldif 43271 . . . . . . . . . . . 12 ((Ord (𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝐶 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝐶)))
4745, 46syl 17 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝐶 ∈ (𝐶 +o 𝐷) ∧ 𝐶𝐶)))
4837, 38, 47mpbir2and 713 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → 𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶))
49 simpl 482 . . . . . . . . . . . . . . 15 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ∈ On)
5049ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → 𝐶 ∈ On)
51 oa0 8554 . . . . . . . . . . . . . 14 (𝐶 ∈ On → (𝐶 +o ∅) = 𝐶)
5250, 51syl 17 . . . . . . . . . . . . 13 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (𝐶 +o ∅) = 𝐶)
5352eqcomd 2743 . . . . . . . . . . . 12 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → 𝐶 = (𝐶 +o ∅))
54 eqidd 2738 . . . . . . . . . . . 12 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (𝐵‘∅) = (𝐵‘∅))
5553, 54jca 511 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (𝐶 = (𝐶 +o ∅) ∧ (𝐵‘∅) = (𝐵‘∅)))
56 oveq2 7439 . . . . . . . . . . . . . 14 (𝑧 = ∅ → (𝐶 +o 𝑧) = (𝐶 +o ∅))
5756eqeq2d 2748 . . . . . . . . . . . . 13 (𝑧 = ∅ → (𝐶 = (𝐶 +o 𝑧) ↔ 𝐶 = (𝐶 +o ∅)))
58 fveq2 6906 . . . . . . . . . . . . . 14 (𝑧 = ∅ → (𝐵𝑧) = (𝐵‘∅))
5958eqeq2d 2748 . . . . . . . . . . . . 13 (𝑧 = ∅ → ((𝐵‘∅) = (𝐵𝑧) ↔ (𝐵‘∅) = (𝐵‘∅)))
6057, 59anbi12d 632 . . . . . . . . . . . 12 (𝑧 = ∅ → ((𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧)) ↔ (𝐶 = (𝐶 +o ∅) ∧ (𝐵‘∅) = (𝐵‘∅))))
6160rspcev 3622 . . . . . . . . . . 11 ((∅ ∈ 𝐷 ∧ (𝐶 = (𝐶 +o ∅) ∧ (𝐵‘∅) = (𝐵‘∅))) → ∃𝑧𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧)))
6234, 55, 61syl2anc 584 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → ∃𝑧𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧)))
63 fvexd 6921 . . . . . . . . . . 11 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (𝐵‘∅) ∈ V)
64 eleq1 2829 . . . . . . . . . . . . . 14 (𝑥 = 𝐶 → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)))
6564adantr 480 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑦 = (𝐵‘∅)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)))
66 eqeq1 2741 . . . . . . . . . . . . . . 15 (𝑥 = 𝐶 → (𝑥 = (𝐶 +o 𝑧) ↔ 𝐶 = (𝐶 +o 𝑧)))
67 eqeq1 2741 . . . . . . . . . . . . . . 15 (𝑦 = (𝐵‘∅) → (𝑦 = (𝐵𝑧) ↔ (𝐵‘∅) = (𝐵𝑧)))
6866, 67bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑥 = 𝐶𝑦 = (𝐵‘∅)) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧))))
6968rexbidv 3179 . . . . . . . . . . . . 13 ((𝑥 = 𝐶𝑦 = (𝐵‘∅)) → (∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)) ↔ ∃𝑧𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧))))
7065, 69anbi12d 632 . . . . . . . . . . . 12 ((𝑥 = 𝐶𝑦 = (𝐵‘∅)) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧))) ↔ (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧)))))
7170opelopabga 5538 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ (𝐵‘∅) ∈ V) → (⟨𝐶, (𝐵‘∅)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ↔ (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧)))))
7250, 63, 71syl2anc 584 . . . . . . . . . 10 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → (⟨𝐶, (𝐵‘∅)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ↔ (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵𝑧)))))
7348, 62, 72mpbir2and 713 . . . . . . . . 9 ((((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o𝐷) → ⟨𝐶, (𝐵‘∅)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))})
7473ex 412 . . . . . . . 8 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (1o𝐷 → ⟨𝐶, (𝐵‘∅)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
75 ordirr 6402 . . . . . . . . . . . . 13 (Ord 𝐶 → ¬ 𝐶𝐶)
7642, 75syl 17 . . . . . . . . . . . 12 (𝐶 ∈ On → ¬ 𝐶𝐶)
7776adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ¬ 𝐶𝐶)
7877adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ¬ 𝐶𝐶)
79 fndm 6671 . . . . . . . . . . . 12 (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶)
8079adantr 480 . . . . . . . . . . 11 ((𝐴 Fn 𝐶𝐵 Fn 𝐷) → dom 𝐴 = 𝐶)
8180adantr 480 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐴 = 𝐶)
8278, 81neleqtrrd 2864 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ¬ 𝐶 ∈ dom 𝐴)
8349adantl 481 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ∈ On)
84 fvexd 6921 . . . . . . . . . 10 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵‘∅) ∈ V)
8583, 84opeldmd 5917 . . . . . . . . 9 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (⟨𝐶, (𝐵‘∅)⟩ ∈ 𝐴𝐶 ∈ dom 𝐴))
8682, 85mtod 198 . . . . . . . 8 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ¬ ⟨𝐶, (𝐵‘∅)⟩ ∈ 𝐴)
8774, 86jctird 526 . . . . . . 7 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (1o𝐷 → (⟨𝐶, (𝐵‘∅)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ∧ ¬ ⟨𝐶, (𝐵‘∅)⟩ ∈ 𝐴)))
88 nelss 4049 . . . . . . 7 ((⟨𝐶, (𝐵‘∅)⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ∧ ¬ ⟨𝐶, (𝐵‘∅)⟩ ∈ 𝐴) → ¬ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴)
8987, 88syl6 35 . . . . . 6 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (1o𝐷 → ¬ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴))
9030, 89syld 47 . . . . 5 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (¬ 𝐷 = ∅ → ¬ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴))
9118, 90impcon4bid 227 . . . 4 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 = ∅ ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴))
927, 91bitrd 279 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴))
93 ssequn2 4189 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))} ⊆ 𝐴 ↔ (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐴)
9492, 93bitrdi 287 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐴))
95 tfsconcat.op . . . 4 + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏𝑧)))}))
9695tfsconcatun 43350 . . 3 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}))
9796eqeq1d 2739 . 2 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = 𝐴 ↔ (𝐴 ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵𝑧)))}) = 𝐴))
9894, 97bitr4d 282 1 (((𝐴 Fn 𝐶𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 + 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  cdif 3948  cun 3949  wss 3951  c0 4333  cop 4632  {copab 5205  dom cdm 5685  Rel wrel 5690  Ord word 6383  Oncon0 6384  suc csuc 6386   Fn wfn 6556  cfv 6561  (class class class)co 7431  cmpo 7433  1oc1o 8499   +o coa 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator