Proof of Theorem tfsconcatb0
| Step | Hyp | Ref
| Expression |
| 1 | | fnrel 6670 |
. . . . . . 7
⊢ (𝐵 Fn 𝐷 → Rel 𝐵) |
| 2 | | reldm0 5938 |
. . . . . . 7
⊢ (Rel
𝐵 → (𝐵 = ∅ ↔ dom 𝐵 = ∅)) |
| 3 | 1, 2 | syl 17 |
. . . . . 6
⊢ (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ dom 𝐵 = ∅)) |
| 4 | | fndm 6671 |
. . . . . . 7
⊢ (𝐵 Fn 𝐷 → dom 𝐵 = 𝐷) |
| 5 | 4 | eqeq1d 2739 |
. . . . . 6
⊢ (𝐵 Fn 𝐷 → (dom 𝐵 = ∅ ↔ 𝐷 = ∅)) |
| 6 | 3, 5 | bitrd 279 |
. . . . 5
⊢ (𝐵 Fn 𝐷 → (𝐵 = ∅ ↔ 𝐷 = ∅)) |
| 7 | 6 | ad2antlr 727 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ 𝐷 = ∅)) |
| 8 | | rex0 4360 |
. . . . . . . . . . 11
⊢ ¬
∃𝑧 ∈ ∅
(𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) |
| 9 | | rexeq 3322 |
. . . . . . . . . . . 12
⊢ (𝐷 = ∅ → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ ∅ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 10 | 9 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ ∅ (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 11 | 8, 10 | mtbiri 327 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → ¬ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) |
| 12 | 11 | intnand 488 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → ¬ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 13 | 12 | alrimivv 1928 |
. . . . . . . 8
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → ∀𝑥∀𝑦 ¬ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 14 | | opab0 5559 |
. . . . . . . 8
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = ∅ ↔ ∀𝑥∀𝑦 ¬ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))) |
| 15 | 13, 14 | sylibr 234 |
. . . . . . 7
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} = ∅) |
| 16 | | 0ss 4400 |
. . . . . . 7
⊢ ∅
⊆ 𝐴 |
| 17 | 15, 16 | eqsstrdi 4028 |
. . . . . 6
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝐷 = ∅) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴) |
| 18 | 17 | ex 412 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 = ∅ → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴)) |
| 19 | | df-1o 8506 |
. . . . . . . . . 10
⊢
1o = suc ∅ |
| 20 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → 𝐷 ∈ On) |
| 21 | | on0eln0 6440 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ On → (∅
∈ 𝐷 ↔ 𝐷 ≠ ∅)) |
| 22 | | df-ne 2941 |
. . . . . . . . . . . . 13
⊢ (𝐷 ≠ ∅ ↔ ¬ 𝐷 = ∅) |
| 23 | 21, 22 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ On → (∅
∈ 𝐷 ↔ ¬ 𝐷 = ∅)) |
| 24 | 23 | biimpar 477 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → ∅
∈ 𝐷) |
| 25 | | onsucss 43279 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ On → (∅
∈ 𝐷 → suc ∅
⊆ 𝐷)) |
| 26 | 20, 24, 25 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → suc ∅
⊆ 𝐷) |
| 27 | 19, 26 | eqsstrid 4022 |
. . . . . . . . 9
⊢ ((𝐷 ∈ On ∧ ¬ 𝐷 = ∅) → 1o
⊆ 𝐷) |
| 28 | 27 | ex 412 |
. . . . . . . 8
⊢ (𝐷 ∈ On → (¬ 𝐷 = ∅ → 1o
⊆ 𝐷)) |
| 29 | 28 | adantl 481 |
. . . . . . 7
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (¬ 𝐷 = ∅ → 1o
⊆ 𝐷)) |
| 30 | 29 | adantl 481 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (¬ 𝐷 = ∅ → 1o ⊆
𝐷)) |
| 31 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → 1o
⊆ 𝐷) |
| 32 | | 0lt1o 8542 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ 1o |
| 33 | 32 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → ∅ ∈
1o) |
| 34 | 31, 33 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → ∅ ∈
𝐷) |
| 35 | | oaord1 8589 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (∅
∈ 𝐷 ↔ 𝐶 ∈ (𝐶 +o 𝐷))) |
| 36 | 35 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (∅ ∈
𝐷 ↔ 𝐶 ∈ (𝐶 +o 𝐷))) |
| 37 | 34, 36 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → 𝐶 ∈ (𝐶 +o 𝐷)) |
| 38 | | ssidd 4007 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → 𝐶 ⊆ 𝐶) |
| 39 | | oacl 8573 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (𝐶 +o 𝐷) ∈ On) |
| 40 | | eloni 6394 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 +o 𝐷) ∈ On → Ord (𝐶 +o 𝐷)) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord (𝐶 +o 𝐷)) |
| 42 | | eloni 6394 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ On → Ord 𝐶) |
| 43 | 42 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → Ord 𝐶) |
| 44 | 41, 43 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
| 45 | 44 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (Ord (𝐶 +o 𝐷) ∧ Ord 𝐶)) |
| 46 | | ordeldif 43271 |
. . . . . . . . . . . 12
⊢ ((Ord
(𝐶 +o 𝐷) ∧ Ord 𝐶) → (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝐶 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝐶))) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ (𝐶 ∈ (𝐶 +o 𝐷) ∧ 𝐶 ⊆ 𝐶))) |
| 48 | 37, 38, 47 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → 𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶)) |
| 49 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → 𝐶 ∈ On) |
| 50 | 49 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → 𝐶 ∈ On) |
| 51 | | oa0 8554 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ On → (𝐶 +o ∅) = 𝐶) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (𝐶 +o ∅) = 𝐶) |
| 53 | 52 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → 𝐶 = (𝐶 +o ∅)) |
| 54 | | eqidd 2738 |
. . . . . . . . . . . 12
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (𝐵‘∅) = (𝐵‘∅)) |
| 55 | 53, 54 | jca 511 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (𝐶 = (𝐶 +o ∅) ∧ (𝐵‘∅) = (𝐵‘∅))) |
| 56 | | oveq2 7439 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ∅ → (𝐶 +o 𝑧) = (𝐶 +o ∅)) |
| 57 | 56 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ∅ → (𝐶 = (𝐶 +o 𝑧) ↔ 𝐶 = (𝐶 +o ∅))) |
| 58 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ∅ → (𝐵‘𝑧) = (𝐵‘∅)) |
| 59 | 58 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ∅ → ((𝐵‘∅) = (𝐵‘𝑧) ↔ (𝐵‘∅) = (𝐵‘∅))) |
| 60 | 57, 59 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∅ → ((𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧)) ↔ (𝐶 = (𝐶 +o ∅) ∧ (𝐵‘∅) = (𝐵‘∅)))) |
| 61 | 60 | rspcev 3622 |
. . . . . . . . . . 11
⊢ ((∅
∈ 𝐷 ∧ (𝐶 = (𝐶 +o ∅) ∧ (𝐵‘∅) = (𝐵‘∅))) →
∃𝑧 ∈ 𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧))) |
| 62 | 34, 55, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → ∃𝑧 ∈ 𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧))) |
| 63 | | fvexd 6921 |
. . . . . . . . . . 11
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (𝐵‘∅) ∈
V) |
| 64 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐶 → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶))) |
| 65 | 64 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐶 ∧ 𝑦 = (𝐵‘∅)) → (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ↔ 𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶))) |
| 66 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐶 → (𝑥 = (𝐶 +o 𝑧) ↔ 𝐶 = (𝐶 +o 𝑧))) |
| 67 | | eqeq1 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐵‘∅) → (𝑦 = (𝐵‘𝑧) ↔ (𝐵‘∅) = (𝐵‘𝑧))) |
| 68 | 66, 67 | bi2anan9 638 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = 𝐶 ∧ 𝑦 = (𝐵‘∅)) → ((𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧)))) |
| 69 | 68 | rexbidv 3179 |
. . . . . . . . . . . . 13
⊢ ((𝑥 = 𝐶 ∧ 𝑦 = (𝐵‘∅)) → (∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)) ↔ ∃𝑧 ∈ 𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧)))) |
| 70 | 65, 69 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝐶 ∧ 𝑦 = (𝐵‘∅)) → ((𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧))) ↔ (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧))))) |
| 71 | 70 | opelopabga 5538 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ (𝐵‘∅) ∈ V) →
(〈𝐶, (𝐵‘∅)〉 ∈
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ↔ (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧))))) |
| 72 | 50, 63, 71 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → (〈𝐶, (𝐵‘∅)〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ↔ (𝐶 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝐶 = (𝐶 +o 𝑧) ∧ (𝐵‘∅) = (𝐵‘𝑧))))) |
| 73 | 48, 62, 72 | mpbir2and 713 |
. . . . . . . . 9
⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 1o ⊆
𝐷) → 〈𝐶, (𝐵‘∅)〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) |
| 74 | 73 | ex 412 |
. . . . . . . 8
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (1o ⊆
𝐷 → 〈𝐶, (𝐵‘∅)〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
| 75 | | ordirr 6402 |
. . . . . . . . . . . . 13
⊢ (Ord
𝐶 → ¬ 𝐶 ∈ 𝐶) |
| 76 | 42, 75 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ On → ¬ 𝐶 ∈ 𝐶) |
| 77 | 76 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝐷 ∈ On) → ¬ 𝐶 ∈ 𝐶) |
| 78 | 77 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ¬ 𝐶 ∈ 𝐶) |
| 79 | | fndm 6671 |
. . . . . . . . . . . 12
⊢ (𝐴 Fn 𝐶 → dom 𝐴 = 𝐶) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) → dom 𝐴 = 𝐶) |
| 81 | 80 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → dom 𝐴 = 𝐶) |
| 82 | 78, 81 | neleqtrrd 2864 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ¬ 𝐶 ∈ dom 𝐴) |
| 83 | 49 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → 𝐶 ∈ On) |
| 84 | | fvexd 6921 |
. . . . . . . . . 10
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵‘∅) ∈ V) |
| 85 | 83, 84 | opeldmd 5917 |
. . . . . . . . 9
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (〈𝐶, (𝐵‘∅)〉 ∈ 𝐴 → 𝐶 ∈ dom 𝐴)) |
| 86 | 82, 85 | mtod 198 |
. . . . . . . 8
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ¬ 〈𝐶, (𝐵‘∅)〉 ∈ 𝐴) |
| 87 | 74, 86 | jctird 526 |
. . . . . . 7
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (1o ⊆
𝐷 → (〈𝐶, (𝐵‘∅)〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ∧ ¬ 〈𝐶, (𝐵‘∅)〉 ∈ 𝐴))) |
| 88 | | nelss 4049 |
. . . . . . 7
⊢
((〈𝐶, (𝐵‘∅)〉 ∈
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ∧ ¬ 〈𝐶, (𝐵‘∅)〉 ∈ 𝐴) → ¬ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴) |
| 89 | 87, 88 | syl6 35 |
. . . . . 6
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (1o ⊆
𝐷 → ¬ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴)) |
| 90 | 30, 89 | syld 47 |
. . . . 5
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (¬ 𝐷 = ∅ → ¬ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴)) |
| 91 | 18, 90 | impcon4bid 227 |
. . . 4
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐷 = ∅ ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴)) |
| 92 | 7, 91 | bitrd 279 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴)) |
| 93 | | ssequn2 4189 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))} ⊆ 𝐴 ↔ (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐴) |
| 94 | 92, 93 | bitrdi 287 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐴)) |
| 95 | | tfsconcat.op |
. . . 4
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) |
| 96 | 95 | tfsconcatun 43350 |
. . 3
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) |
| 97 | 96 | eqeq1d 2739 |
. 2
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 + 𝐵) = 𝐴 ↔ (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))}) = 𝐴)) |
| 98 | 94, 97 | bitr4d 282 |
1
⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 + 𝐵) = 𝐴)) |