MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0n0n1ge2b Structured version   Visualization version   GIF version

Theorem nn0n0n1ge2b 11957
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
nn0n0n1ge2b (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem nn0n0n1ge2b
StepHypRef Expression
1 nn0n0n1ge2 11956 . . 3 ((𝑁 ∈ ℕ0𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)
213expib 1118 . 2 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁))
3 ianor 978 . . . 4 (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1))
4 nne 3020 . . . . 5 𝑁 ≠ 0 ↔ 𝑁 = 0)
5 nne 3020 . . . . 5 𝑁 ≠ 1 ↔ 𝑁 = 1)
64, 5orbi12i 911 . . . 4 ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1))
73, 6bitri 277 . . 3 (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1))
8 2pos 11734 . . . . . . . . 9 0 < 2
9 breq1 5062 . . . . . . . . 9 (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2))
108, 9mpbiri 260 . . . . . . . 8 (𝑁 = 0 → 𝑁 < 2)
1110a1d 25 . . . . . . 7 (𝑁 = 0 → (𝑁 ∈ ℕ0𝑁 < 2))
12 1lt2 11802 . . . . . . . . 9 1 < 2
13 breq1 5062 . . . . . . . . 9 (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2))
1412, 13mpbiri 260 . . . . . . . 8 (𝑁 = 1 → 𝑁 < 2)
1514a1d 25 . . . . . . 7 (𝑁 = 1 → (𝑁 ∈ ℕ0𝑁 < 2))
1611, 15jaoi 853 . . . . . 6 ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0𝑁 < 2))
1716impcom 410 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2)
18 nn0re 11900 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
19 2re 11705 . . . . . . . 8 2 ∈ ℝ
2018, 19jctir 523 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ))
2120adantr 483 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ))
22 ltnle 10714 . . . . . 6 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
2321, 22syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁))
2417, 23mpbid 234 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁)
2524ex 415 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁))
267, 25syl5bi 244 . 2 (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁))
272, 26impcon4bid 229 1 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5059  cr 10530  0cc0 10531  1c1 10532   < clt 10669  cle 10670  2c2 11686  0cn0 11891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892
This theorem is referenced by:  xnn0n0n1ge2b  12520
  Copyright terms: Public domain W3C validator