![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0n0n1ge2b | Structured version Visualization version GIF version |
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
Ref | Expression |
---|---|
nn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0n0n1ge2 12535 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | |
2 | 1 | 3expib 1122 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)) |
3 | ianor 980 | . . . 4 ⊢ (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)) | |
4 | nne 2944 | . . . . 5 ⊢ (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0) | |
5 | nne 2944 | . . . . 5 ⊢ (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1) | |
6 | 4, 5 | orbi12i 913 | . . . 4 ⊢ ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)) |
7 | 3, 6 | bitri 274 | . . 3 ⊢ (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)) |
8 | 2pos 12311 | . . . . . . . . 9 ⊢ 0 < 2 | |
9 | breq1 5150 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2)) | |
10 | 8, 9 | mpbiri 257 | . . . . . . . 8 ⊢ (𝑁 = 0 → 𝑁 < 2) |
11 | 10 | a1d 25 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
12 | 1lt2 12379 | . . . . . . . . 9 ⊢ 1 < 2 | |
13 | breq1 5150 | . . . . . . . . 9 ⊢ (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2)) | |
14 | 12, 13 | mpbiri 257 | . . . . . . . 8 ⊢ (𝑁 = 1 → 𝑁 < 2) |
15 | 14 | a1d 25 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
16 | 11, 15 | jaoi 855 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
17 | 16 | impcom 408 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2) |
18 | nn0re 12477 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
19 | 2re 12282 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
20 | 18, 19 | jctir 521 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ)) |
21 | 20 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ)) |
22 | ltnle 11289 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) |
24 | 17, 23 | mpbid 231 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁) |
25 | 24 | ex 413 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁)) |
26 | 7, 25 | biimtrid 241 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁)) |
27 | 2, 26 | impcon4bid 226 | 1 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 ℝcr 11105 0cc0 11106 1c1 11107 < clt 11244 ≤ cle 11245 2c2 12263 ℕ0cn0 12468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 |
This theorem is referenced by: xnn0n0n1ge2b 13107 |
Copyright terms: Public domain | W3C validator |