| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0n0n1ge2b | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| nn0n0n1ge2b | ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0n0n1ge2 12574 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁) | |
| 2 | 1 | 3expib 1122 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → 2 ≤ 𝑁)) |
| 3 | ianor 983 | . . . 4 ⊢ (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1)) | |
| 4 | nne 2937 | . . . . 5 ⊢ (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0) | |
| 5 | nne 2937 | . . . . 5 ⊢ (¬ 𝑁 ≠ 1 ↔ 𝑁 = 1) | |
| 6 | 4, 5 | orbi12i 914 | . . . 4 ⊢ ((¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)) |
| 7 | 3, 6 | bitri 275 | . . 3 ⊢ (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ (𝑁 = 0 ∨ 𝑁 = 1)) |
| 8 | 2pos 12348 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 9 | breq1 5127 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (𝑁 < 2 ↔ 0 < 2)) | |
| 10 | 8, 9 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑁 = 0 → 𝑁 < 2) |
| 11 | 10 | a1d 25 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
| 12 | 1lt2 12416 | . . . . . . . . 9 ⊢ 1 < 2 | |
| 13 | breq1 5127 | . . . . . . . . 9 ⊢ (𝑁 = 1 → (𝑁 < 2 ↔ 1 < 2)) | |
| 14 | 12, 13 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑁 = 1 → 𝑁 < 2) |
| 15 | 14 | a1d 25 | . . . . . . 7 ⊢ (𝑁 = 1 → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
| 16 | 11, 15 | jaoi 857 | . . . . . 6 ⊢ ((𝑁 = 0 ∨ 𝑁 = 1) → (𝑁 ∈ ℕ0 → 𝑁 < 2)) |
| 17 | 16 | impcom 407 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → 𝑁 < 2) |
| 18 | nn0re 12515 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 19 | 2re 12319 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 20 | 18, 19 | jctir 520 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ)) |
| 21 | 20 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ)) |
| 22 | ltnle 11319 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → (𝑁 < 2 ↔ ¬ 2 ≤ 𝑁)) |
| 24 | 17, 23 | mpbid 232 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 = 0 ∨ 𝑁 = 1)) → ¬ 2 ≤ 𝑁) |
| 25 | 24 | ex 412 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 = 0 ∨ 𝑁 = 1) → ¬ 2 ≤ 𝑁)) |
| 26 | 7, 25 | biimtrid 242 | . 2 ⊢ (𝑁 ∈ ℕ0 → (¬ (𝑁 ≠ 0 ∧ 𝑁 ≠ 1) → ¬ 2 ≤ 𝑁)) |
| 27 | 2, 26 | impcon4bid 227 | 1 ⊢ (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ℝcr 11133 0cc0 11134 1c1 11135 < clt 11274 ≤ cle 11275 2c2 12300 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 |
| This theorem is referenced by: xnn0n0n1ge2b 13153 |
| Copyright terms: Public domain | W3C validator |