Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgdvgrat Structured version   Visualization version   GIF version

Theorem cvgdvgrat 44309
Description: Ratio test for convergence and divergence of a complex infinite series. If the ratio 𝑅 of the absolute values of successive terms in an infinite sequence 𝐹 converges to less than one, then the infinite sum of the terms of 𝐹 converges to a complex number; and if 𝑅 converges greater then the sum diverges. This combined form of cvgrat 15856 and dvgrat 44308 directly uses the limit of the ratio.

(It also demonstrates how to use climi2 15484 and absltd 15405 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15405, and how to use r19.29a 3142 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3135 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3135.) (Contributed by Steve Rodriguez, 28-Feb-2020.)

Hypotheses
Ref Expression
cvgdvgrat.z 𝑍 = (ℤ𝑀)
cvgdvgrat.w 𝑊 = (ℤ𝑁)
cvgdvgrat.n (𝜑𝑁𝑍)
cvgdvgrat.f (𝜑𝐹𝑉)
cvgdvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgdvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
cvgdvgrat.r 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
cvgdvgrat.cvg (𝜑𝑅𝐿)
cvgdvgrat.n1 (𝜑𝐿 ≠ 1)
Assertion
Ref Expression
cvgdvgrat (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝐿   𝑘,𝑁   𝑘,𝑊   𝑅,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem cvgdvgrat
Dummy variables 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgdvgrat.w . . . . . . . . 9 𝑊 = (ℤ𝑁)
2 eqid 2730 . . . . . . . . 9 (ℤ𝑛) = (ℤ𝑛)
3 elioore 13343 . . . . . . . . . 10 (𝑟 ∈ (𝐿(,)1) → 𝑟 ∈ ℝ)
43ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 ∈ ℝ)
5 cvgdvgrat.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁𝑍)
6 cvgdvgrat.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
75, 6eleqtrdi 2839 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ𝑀))
8 eluzelz 12810 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
10 cvgdvgrat.cvg . . . . . . . . . . . . . . 15 (𝜑𝑅𝐿)
11 cvgdvgrat.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
1211a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))))
131peano2uzs 12868 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14 ovex 7423 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 + 1) ∈ V
15 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
1615anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
17 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
1817eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
1916, 18imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
20 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
2120anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
22 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2322eleq1d 2814 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
2421, 23imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
251eleq2i 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
266uztrn2 12819 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
275, 26sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2825, 27sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑊) → 𝑘𝑍)
29 cvgdvgrat.c . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3028, 29syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3124, 30chvarvv 1989 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
3214, 19, 31vtocl 3527 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3313, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
34 cvgdvgrat.n0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
3533, 30, 34divcld 11965 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑊) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
3635abscld 15412 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
3712, 36fvmpt2d 6984 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
3837, 36eqeltrd 2829 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑅𝑘) ∈ ℝ)
391, 9, 10, 38climrecl 15556 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℝ)
4039rexrd 11231 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℝ*)
41 1xr 11240 . . . . . . . . . . . . 13 1 ∈ ℝ*
42 elioo2 13354 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4340, 41, 42sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4443biimpa 476 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1))
4544simp3d 1144 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑟 < 1)
4645ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 < 1)
47 simplr 768 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑛𝑊)
4831ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
4948ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
5049imp 406 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
51 fvoveq1 7413 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
5251fveq2d 6865 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘(𝐹‘(𝑖 + 1))))
5322fveq2d 6865 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑖)))
5453oveq2d 7406 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑟 · (abs‘(𝐹𝑘))) = (𝑟 · (abs‘(𝐹𝑖))))
5552, 54breq12d 5123 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ↔ (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖)))))
5655rspccva 3590 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
5756adantll 714 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
581, 2, 4, 46, 47, 50, 57cvgrat 15856 . . . . . . . 8 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
599adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑁 ∈ ℤ)
6044simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝐿 < 𝑟)
61 difrp 12998 . . . . . . . . . . . 12 ((𝐿 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6239, 3, 61syl2an 596 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6360, 62mpbid 232 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟𝐿) ∈ ℝ+)
6437adantlr 715 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
6510adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑅𝐿)
661, 59, 63, 64, 65climi2 15484 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿))
671uztrn2 12819 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑊𝑘 ∈ (ℤ𝑛)) → 𝑘𝑊)
6867, 33sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
6968anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7069adantllr 719 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7170adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7271abscld 15412 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
733ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℝ)
7467, 30sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ∈ ℂ)
7574anassrs 467 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7675adantllr 719 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7776adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ∈ ℂ)
7877abscld 15412 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ)
7973, 78remulcld 11211 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝑟 · (abs‘(𝐹𝑘))) ∈ ℝ)
8067, 34sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ≠ 0)
8180anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8281adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8382adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ≠ 0)
8471, 77, 83absdivd 15431 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
8570, 76, 82divcld 11965 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
8685abscld 15412 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
8739ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
8886, 87resubcld 11613 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
893ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ)
9089, 87resubcld 11613 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑟𝐿) ∈ ℝ)
9188, 90absltd 15405 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) ↔ (-(𝑟𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))))
9291simplbda 499 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))
9371, 77, 83divcld 11965 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
9493abscld 15412 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
9539ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝐿 ∈ ℝ)
9694, 73, 95ltsub1d 11794 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟 ↔ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿)))
9792, 96mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟)
9884, 97eqbrtrrd 5134 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟)
9977, 83absrpcld 15424 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
10072, 73, 99ltdivmuld 13053 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟 ↔ (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟)))
10198, 100mpbid 232 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟))
10299rpcnd 13004 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℂ)
10373recnd 11209 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℂ)
104102, 103mulcomd 11202 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹𝑘)) · 𝑟) = (𝑟 · (abs‘(𝐹𝑘))))
105101, 104breqtrd 5136 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < (𝑟 · (abs‘(𝐹𝑘))))
10672, 79, 105ltled 11329 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
107106ex 412 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
108107ralimdva 3146 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
109108reximdva 3147 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
11066, 109mpd 15 . . . . . . . 8 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
11158, 110r19.29a 3142 . . . . . . 7 ((𝜑𝑟 ∈ (𝐿(,)1)) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
112111ralrimiva 3126 . . . . . 6 (𝜑 → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
113112adantr 480 . . . . 5 ((𝜑𝐿 < 1) → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
114 ioon0 13339 . . . . . . . 8 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
11540, 41, 114sylancl 586 . . . . . . 7 (𝜑 → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
116115biimpar 477 . . . . . 6 ((𝜑𝐿 < 1) → (𝐿(,)1) ≠ ∅)
117 r19.3rzv 4465 . . . . . 6 ((𝐿(,)1) ≠ ∅ → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
118116, 117syl 17 . . . . 5 ((𝜑𝐿 < 1) → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
119113, 118mpbird 257 . . . 4 ((𝜑𝐿 < 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1206, 5, 29iserex 15630 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
121120adantr 480 . . . 4 ((𝜑𝐿 < 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
122119, 121mpbird 257 . . 3 ((𝜑𝐿 < 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
123122ex 412 . 2 (𝜑 → (𝐿 < 1 → seq𝑀( + , 𝐹) ∈ dom ⇝ ))
124 cvgdvgrat.n1 . . . . . 6 (𝜑𝐿 ≠ 1)
125 1red 11182 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
12639, 125lttri2d 11320 . . . . . 6 (𝜑 → (𝐿 ≠ 1 ↔ (𝐿 < 1 ∨ 1 < 𝐿)))
127124, 126mpbid 232 . . . . 5 (𝜑 → (𝐿 < 1 ∨ 1 < 𝐿))
128127orcanai 1004 . . . 4 ((𝜑 ∧ ¬ 𝐿 < 1) → 1 < 𝐿)
129 simplr 768 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝑛𝑊)
130 cvgdvgrat.f . . . . . . . . 9 (𝜑𝐹𝑉)
131130ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝐹𝑉)
13248ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
133132imp 406 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
1341uztrn2 12819 . . . . . . . . . . . 12 ((𝑛𝑊𝑖 ∈ (ℤ𝑛)) → 𝑖𝑊)
13522neeq1d 2985 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ((𝐹𝑘) ≠ 0 ↔ (𝐹𝑖) ≠ 0))
13621, 135imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)))
137136, 34chvarvv 1989 . . . . . . . . . . . 12 ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)
138134, 137sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑊𝑖 ∈ (ℤ𝑛))) → (𝐹𝑖) ≠ 0)
139138anassrs 467 . . . . . . . . . 10 (((𝜑𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
140139adantllr 719 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
141140adantlr 715 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
14253, 52breq12d 5123 . . . . . . . . . 10 (𝑘 = 𝑖 → ((abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ↔ (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1)))))
143142rspccva 3590 . . . . . . . . 9 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
144143adantll 714 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
1451, 2, 129, 131, 133, 141, 144dvgrat 44308 . . . . . . 7 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
1469adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑁 ∈ ℤ)
147 1re 11181 . . . . . . . . . . 11 1 ∈ ℝ
148 difrp 12998 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
149147, 39, 148sylancr 587 . . . . . . . . . 10 (𝜑 → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
150149biimpa 476 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → (𝐿 − 1) ∈ ℝ+)
15137adantlr 715 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
15210adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑅𝐿)
1531, 146, 150, 151, 152climi2 15484 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1))
15475adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
155154adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ∈ ℂ)
156155abscld 15412 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ)
15769adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
158157adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
159158abscld 15412 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
16081adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
161160adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ≠ 0)
162155, 161absrpcld 15424 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
163162rpcnd 13004 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℂ)
164163mullidd 11199 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
16539ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℝ)
166165recnd 11209 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℂ)
167 1cnd 11176 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℂ)
168166, 167negsubdi2d 11556 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) = (1 − 𝐿))
169157, 154, 160divcld 11965 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
170169abscld 15412 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
17139ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
172170, 171resubcld 11613 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
173 1red 11182 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℝ)
174171, 173resubcld 11613 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐿 − 1) ∈ ℝ)
175172, 174absltd 15405 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) ↔ (-(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝐿 − 1))))
176175simprbda 498 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
177168, 176eqbrtrrd 5134 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
178 1red 11182 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℝ)
179158, 155, 161divcld 11965 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
180179abscld 15412 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
181178, 180, 165ltsub1d 11794 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ↔ (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)))
182177, 181mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
183158, 155, 161absdivd 15431 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
184182, 183breqtrd 5136 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
185178, 159, 162ltmuldivd 13049 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))) ↔ 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘)))))
186184, 185mpbird 257 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))))
187164, 186eqbrtrrd 5134 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) < (abs‘(𝐹‘(𝑘 + 1))))
188156, 159, 187ltled 11329 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
189188ex 412 . . . . . . . . . 10 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
190189ralimdva 3146 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
191190reximdva 3147 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
192153, 191mpd 15 . . . . . . 7 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
193145, 192r19.29a 3142 . . . . . 6 ((𝜑 ∧ 1 < 𝐿) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
194 df-nel 3031 . . . . . 6 (seq𝑁( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
195193, 194sylib 218 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
196120adantr 480 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
197195, 196mtbird 325 . . . 4 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
198128, 197syldan 591 . . 3 ((𝜑 ∧ ¬ 𝐿 < 1) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
199198ex 412 . 2 (𝜑 → (¬ 𝐿 < 1 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
200123, 199impcon4bid 227 1 (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wnel 3030  wral 3045  wrex 3054  c0 4299   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cz 12536  cuz 12800  +crp 12958  (,)cioo 13313  seqcseq 13973  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-ioo 13317  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  radcnvrat  44310
  Copyright terms: Public domain W3C validator