Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgdvgrat Structured version   Visualization version   GIF version

Theorem cvgdvgrat 44309
Description: Ratio test for convergence and divergence of a complex infinite series. If the ratio 𝑅 of the absolute values of successive terms in an infinite sequence 𝐹 converges to less than one, then the infinite sum of the terms of 𝐹 converges to a complex number; and if 𝑅 converges greater then the sum diverges. This combined form of cvgrat 15916 and dvgrat 44308 directly uses the limit of the ratio.

(It also demonstrates how to use climi2 15544 and absltd 15465 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15465, and how to use r19.29a 3160 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3153 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3153.) (Contributed by Steve Rodriguez, 28-Feb-2020.)

Hypotheses
Ref Expression
cvgdvgrat.z 𝑍 = (ℤ𝑀)
cvgdvgrat.w 𝑊 = (ℤ𝑁)
cvgdvgrat.n (𝜑𝑁𝑍)
cvgdvgrat.f (𝜑𝐹𝑉)
cvgdvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgdvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
cvgdvgrat.r 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
cvgdvgrat.cvg (𝜑𝑅𝐿)
cvgdvgrat.n1 (𝜑𝐿 ≠ 1)
Assertion
Ref Expression
cvgdvgrat (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝐿   𝑘,𝑁   𝑘,𝑊   𝑅,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem cvgdvgrat
Dummy variables 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgdvgrat.w . . . . . . . . 9 𝑊 = (ℤ𝑁)
2 eqid 2735 . . . . . . . . 9 (ℤ𝑛) = (ℤ𝑛)
3 elioore 13414 . . . . . . . . . 10 (𝑟 ∈ (𝐿(,)1) → 𝑟 ∈ ℝ)
43ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 ∈ ℝ)
5 cvgdvgrat.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁𝑍)
6 cvgdvgrat.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
75, 6eleqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ𝑀))
8 eluzelz 12886 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
10 cvgdvgrat.cvg . . . . . . . . . . . . . . 15 (𝜑𝑅𝐿)
11 cvgdvgrat.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
1211a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))))
131peano2uzs 12942 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14 ovex 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 + 1) ∈ V
15 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
1615anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
17 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
1817eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
1916, 18imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
20 eleq1 2827 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
2120anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
22 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2322eleq1d 2824 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
2421, 23imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
251eleq2i 2831 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
266uztrn2 12895 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
275, 26sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2825, 27sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑊) → 𝑘𝑍)
29 cvgdvgrat.c . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3028, 29syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3124, 30chvarvv 1996 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
3214, 19, 31vtocl 3558 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3313, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
34 cvgdvgrat.n0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
3533, 30, 34divcld 12041 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑊) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
3635abscld 15472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
3712, 36fvmpt2d 7029 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
3837, 36eqeltrd 2839 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑅𝑘) ∈ ℝ)
391, 9, 10, 38climrecl 15616 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℝ)
4039rexrd 11309 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℝ*)
41 1xr 11318 . . . . . . . . . . . . 13 1 ∈ ℝ*
42 elioo2 13425 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4340, 41, 42sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4443biimpa 476 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1))
4544simp3d 1143 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑟 < 1)
4645ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 < 1)
47 simplr 769 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑛𝑊)
4831ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
4948ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
5049imp 406 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
51 fvoveq1 7454 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
5251fveq2d 6911 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘(𝐹‘(𝑖 + 1))))
5322fveq2d 6911 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑖)))
5453oveq2d 7447 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑟 · (abs‘(𝐹𝑘))) = (𝑟 · (abs‘(𝐹𝑖))))
5552, 54breq12d 5161 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ↔ (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖)))))
5655rspccva 3621 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
5756adantll 714 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
581, 2, 4, 46, 47, 50, 57cvgrat 15916 . . . . . . . 8 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
599adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑁 ∈ ℤ)
6044simp2d 1142 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝐿 < 𝑟)
61 difrp 13071 . . . . . . . . . . . 12 ((𝐿 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6239, 3, 61syl2an 596 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6360, 62mpbid 232 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟𝐿) ∈ ℝ+)
6437adantlr 715 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
6510adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑅𝐿)
661, 59, 63, 64, 65climi2 15544 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿))
671uztrn2 12895 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑊𝑘 ∈ (ℤ𝑛)) → 𝑘𝑊)
6867, 33sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
6968anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7069adantllr 719 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7170adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7271abscld 15472 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
733ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℝ)
7467, 30sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ∈ ℂ)
7574anassrs 467 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7675adantllr 719 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7776adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ∈ ℂ)
7877abscld 15472 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ)
7973, 78remulcld 11289 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝑟 · (abs‘(𝐹𝑘))) ∈ ℝ)
8067, 34sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ≠ 0)
8180anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8281adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8382adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ≠ 0)
8471, 77, 83absdivd 15491 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
8570, 76, 82divcld 12041 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
8685abscld 15472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
8739ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
8886, 87resubcld 11689 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
893ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ)
9089, 87resubcld 11689 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑟𝐿) ∈ ℝ)
9188, 90absltd 15465 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) ↔ (-(𝑟𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))))
9291simplbda 499 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))
9371, 77, 83divcld 12041 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
9493abscld 15472 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
9539ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝐿 ∈ ℝ)
9694, 73, 95ltsub1d 11870 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟 ↔ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿)))
9792, 96mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟)
9884, 97eqbrtrrd 5172 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟)
9977, 83absrpcld 15484 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
10072, 73, 99ltdivmuld 13126 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟 ↔ (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟)))
10198, 100mpbid 232 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟))
10299rpcnd 13077 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℂ)
10373recnd 11287 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℂ)
104102, 103mulcomd 11280 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹𝑘)) · 𝑟) = (𝑟 · (abs‘(𝐹𝑘))))
105101, 104breqtrd 5174 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < (𝑟 · (abs‘(𝐹𝑘))))
10672, 79, 105ltled 11407 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
107106ex 412 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
108107ralimdva 3165 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
109108reximdva 3166 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
11066, 109mpd 15 . . . . . . . 8 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
11158, 110r19.29a 3160 . . . . . . 7 ((𝜑𝑟 ∈ (𝐿(,)1)) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
112111ralrimiva 3144 . . . . . 6 (𝜑 → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
113112adantr 480 . . . . 5 ((𝜑𝐿 < 1) → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
114 ioon0 13410 . . . . . . . 8 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
11540, 41, 114sylancl 586 . . . . . . 7 (𝜑 → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
116115biimpar 477 . . . . . 6 ((𝜑𝐿 < 1) → (𝐿(,)1) ≠ ∅)
117 r19.3rzv 4505 . . . . . 6 ((𝐿(,)1) ≠ ∅ → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
118116, 117syl 17 . . . . 5 ((𝜑𝐿 < 1) → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
119113, 118mpbird 257 . . . 4 ((𝜑𝐿 < 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1206, 5, 29iserex 15690 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
121120adantr 480 . . . 4 ((𝜑𝐿 < 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
122119, 121mpbird 257 . . 3 ((𝜑𝐿 < 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
123122ex 412 . 2 (𝜑 → (𝐿 < 1 → seq𝑀( + , 𝐹) ∈ dom ⇝ ))
124 cvgdvgrat.n1 . . . . . 6 (𝜑𝐿 ≠ 1)
125 1red 11260 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
12639, 125lttri2d 11398 . . . . . 6 (𝜑 → (𝐿 ≠ 1 ↔ (𝐿 < 1 ∨ 1 < 𝐿)))
127124, 126mpbid 232 . . . . 5 (𝜑 → (𝐿 < 1 ∨ 1 < 𝐿))
128127orcanai 1004 . . . 4 ((𝜑 ∧ ¬ 𝐿 < 1) → 1 < 𝐿)
129 simplr 769 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝑛𝑊)
130 cvgdvgrat.f . . . . . . . . 9 (𝜑𝐹𝑉)
131130ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝐹𝑉)
13248ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
133132imp 406 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
1341uztrn2 12895 . . . . . . . . . . . 12 ((𝑛𝑊𝑖 ∈ (ℤ𝑛)) → 𝑖𝑊)
13522neeq1d 2998 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ((𝐹𝑘) ≠ 0 ↔ (𝐹𝑖) ≠ 0))
13621, 135imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)))
137136, 34chvarvv 1996 . . . . . . . . . . . 12 ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)
138134, 137sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑊𝑖 ∈ (ℤ𝑛))) → (𝐹𝑖) ≠ 0)
139138anassrs 467 . . . . . . . . . 10 (((𝜑𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
140139adantllr 719 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
141140adantlr 715 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
14253, 52breq12d 5161 . . . . . . . . . 10 (𝑘 = 𝑖 → ((abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ↔ (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1)))))
143142rspccva 3621 . . . . . . . . 9 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
144143adantll 714 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
1451, 2, 129, 131, 133, 141, 144dvgrat 44308 . . . . . . 7 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
1469adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑁 ∈ ℤ)
147 1re 11259 . . . . . . . . . . 11 1 ∈ ℝ
148 difrp 13071 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
149147, 39, 148sylancr 587 . . . . . . . . . 10 (𝜑 → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
150149biimpa 476 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → (𝐿 − 1) ∈ ℝ+)
15137adantlr 715 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
15210adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑅𝐿)
1531, 146, 150, 151, 152climi2 15544 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1))
15475adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
155154adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ∈ ℂ)
156155abscld 15472 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ)
15769adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
158157adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
159158abscld 15472 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
16081adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
161160adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ≠ 0)
162155, 161absrpcld 15484 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
163162rpcnd 13077 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℂ)
164163mullidd 11277 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
16539ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℝ)
166165recnd 11287 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℂ)
167 1cnd 11254 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℂ)
168166, 167negsubdi2d 11634 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) = (1 − 𝐿))
169157, 154, 160divcld 12041 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
170169abscld 15472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
17139ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
172170, 171resubcld 11689 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
173 1red 11260 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℝ)
174171, 173resubcld 11689 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐿 − 1) ∈ ℝ)
175172, 174absltd 15465 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) ↔ (-(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝐿 − 1))))
176175simprbda 498 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
177168, 176eqbrtrrd 5172 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
178 1red 11260 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℝ)
179158, 155, 161divcld 12041 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
180179abscld 15472 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
181178, 180, 165ltsub1d 11870 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ↔ (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)))
182177, 181mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
183158, 155, 161absdivd 15491 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
184182, 183breqtrd 5174 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
185178, 159, 162ltmuldivd 13122 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))) ↔ 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘)))))
186184, 185mpbird 257 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))))
187164, 186eqbrtrrd 5172 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) < (abs‘(𝐹‘(𝑘 + 1))))
188156, 159, 187ltled 11407 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
189188ex 412 . . . . . . . . . 10 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
190189ralimdva 3165 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
191190reximdva 3166 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
192153, 191mpd 15 . . . . . . 7 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
193145, 192r19.29a 3160 . . . . . 6 ((𝜑 ∧ 1 < 𝐿) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
194 df-nel 3045 . . . . . 6 (seq𝑁( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
195193, 194sylib 218 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
196120adantr 480 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
197195, 196mtbird 325 . . . 4 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
198128, 197syldan 591 . . 3 ((𝜑 ∧ ¬ 𝐿 < 1) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
199198ex 412 . 2 (𝜑 → (¬ 𝐿 < 1 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
200123, 199impcon4bid 227 1 (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wnel 3044  wral 3059  wrex 3068  c0 4339   class class class wbr 5148  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  cz 12611  cuz 12876  +crp 13032  (,)cioo 13384  seqcseq 14039  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-ioo 13388  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720
This theorem is referenced by:  radcnvrat  44310
  Copyright terms: Public domain W3C validator