Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgdvgrat Structured version   Visualization version   GIF version

Theorem cvgdvgrat 44302
Description: Ratio test for convergence and divergence of a complex infinite series. If the ratio 𝑅 of the absolute values of successive terms in an infinite sequence 𝐹 converges to less than one, then the infinite sum of the terms of 𝐹 converges to a complex number; and if 𝑅 converges greater then the sum diverges. This combined form of cvgrat 15849 and dvgrat 44301 directly uses the limit of the ratio.

(It also demonstrates how to use climi2 15477 and absltd 15398 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15398, and how to use r19.29a 3141 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3134 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3134.) (Contributed by Steve Rodriguez, 28-Feb-2020.)

Hypotheses
Ref Expression
cvgdvgrat.z 𝑍 = (ℤ𝑀)
cvgdvgrat.w 𝑊 = (ℤ𝑁)
cvgdvgrat.n (𝜑𝑁𝑍)
cvgdvgrat.f (𝜑𝐹𝑉)
cvgdvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgdvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
cvgdvgrat.r 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
cvgdvgrat.cvg (𝜑𝑅𝐿)
cvgdvgrat.n1 (𝜑𝐿 ≠ 1)
Assertion
Ref Expression
cvgdvgrat (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝐿   𝑘,𝑁   𝑘,𝑊   𝑅,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem cvgdvgrat
Dummy variables 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgdvgrat.w . . . . . . . . 9 𝑊 = (ℤ𝑁)
2 eqid 2729 . . . . . . . . 9 (ℤ𝑛) = (ℤ𝑛)
3 elioore 13336 . . . . . . . . . 10 (𝑟 ∈ (𝐿(,)1) → 𝑟 ∈ ℝ)
43ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 ∈ ℝ)
5 cvgdvgrat.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁𝑍)
6 cvgdvgrat.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
75, 6eleqtrdi 2838 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ𝑀))
8 eluzelz 12803 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
10 cvgdvgrat.cvg . . . . . . . . . . . . . . 15 (𝜑𝑅𝐿)
11 cvgdvgrat.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
1211a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))))
131peano2uzs 12861 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14 ovex 7420 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 + 1) ∈ V
15 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
1615anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
17 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
1817eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
1916, 18imbi12d 344 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
20 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
2120anbi2d 630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
22 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2322eleq1d 2813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
2421, 23imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
251eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
266uztrn2 12812 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
275, 26sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2825, 27sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑊) → 𝑘𝑍)
29 cvgdvgrat.c . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3028, 29syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3124, 30chvarvv 1989 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
3214, 19, 31vtocl 3524 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3313, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
34 cvgdvgrat.n0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
3533, 30, 34divcld 11958 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑊) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
3635abscld 15405 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
3712, 36fvmpt2d 6981 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
3837, 36eqeltrd 2828 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑅𝑘) ∈ ℝ)
391, 9, 10, 38climrecl 15549 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℝ)
4039rexrd 11224 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℝ*)
41 1xr 11233 . . . . . . . . . . . . 13 1 ∈ ℝ*
42 elioo2 13347 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4340, 41, 42sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4443biimpa 476 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1))
4544simp3d 1144 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑟 < 1)
4645ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 < 1)
47 simplr 768 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑛𝑊)
4831ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
4948ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
5049imp 406 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
51 fvoveq1 7410 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
5251fveq2d 6862 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘(𝐹‘(𝑖 + 1))))
5322fveq2d 6862 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑖)))
5453oveq2d 7403 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑟 · (abs‘(𝐹𝑘))) = (𝑟 · (abs‘(𝐹𝑖))))
5552, 54breq12d 5120 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ↔ (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖)))))
5655rspccva 3587 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
5756adantll 714 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
581, 2, 4, 46, 47, 50, 57cvgrat 15849 . . . . . . . 8 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
599adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑁 ∈ ℤ)
6044simp2d 1143 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝐿 < 𝑟)
61 difrp 12991 . . . . . . . . . . . 12 ((𝐿 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6239, 3, 61syl2an 596 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6360, 62mpbid 232 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟𝐿) ∈ ℝ+)
6437adantlr 715 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
6510adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑅𝐿)
661, 59, 63, 64, 65climi2 15477 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿))
671uztrn2 12812 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑊𝑘 ∈ (ℤ𝑛)) → 𝑘𝑊)
6867, 33sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
6968anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7069adantllr 719 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7170adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7271abscld 15405 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
733ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℝ)
7467, 30sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ∈ ℂ)
7574anassrs 467 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7675adantllr 719 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7776adantr 480 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ∈ ℂ)
7877abscld 15405 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ)
7973, 78remulcld 11204 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝑟 · (abs‘(𝐹𝑘))) ∈ ℝ)
8067, 34sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ≠ 0)
8180anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8281adantllr 719 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8382adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ≠ 0)
8471, 77, 83absdivd 15424 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
8570, 76, 82divcld 11958 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
8685abscld 15405 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
8739ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
8886, 87resubcld 11606 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
893ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ)
9089, 87resubcld 11606 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑟𝐿) ∈ ℝ)
9188, 90absltd 15398 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) ↔ (-(𝑟𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))))
9291simplbda 499 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))
9371, 77, 83divcld 11958 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
9493abscld 15405 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
9539ad4antr 732 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝐿 ∈ ℝ)
9694, 73, 95ltsub1d 11787 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟 ↔ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿)))
9792, 96mpbird 257 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟)
9884, 97eqbrtrrd 5131 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟)
9977, 83absrpcld 15417 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
10072, 73, 99ltdivmuld 13046 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟 ↔ (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟)))
10198, 100mpbid 232 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟))
10299rpcnd 12997 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℂ)
10373recnd 11202 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℂ)
104102, 103mulcomd 11195 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹𝑘)) · 𝑟) = (𝑟 · (abs‘(𝐹𝑘))))
105101, 104breqtrd 5133 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < (𝑟 · (abs‘(𝐹𝑘))))
10672, 79, 105ltled 11322 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
107106ex 412 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
108107ralimdva 3145 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
109108reximdva 3146 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
11066, 109mpd 15 . . . . . . . 8 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
11158, 110r19.29a 3141 . . . . . . 7 ((𝜑𝑟 ∈ (𝐿(,)1)) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
112111ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
113112adantr 480 . . . . 5 ((𝜑𝐿 < 1) → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
114 ioon0 13332 . . . . . . . 8 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
11540, 41, 114sylancl 586 . . . . . . 7 (𝜑 → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
116115biimpar 477 . . . . . 6 ((𝜑𝐿 < 1) → (𝐿(,)1) ≠ ∅)
117 r19.3rzv 4462 . . . . . 6 ((𝐿(,)1) ≠ ∅ → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
118116, 117syl 17 . . . . 5 ((𝜑𝐿 < 1) → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
119113, 118mpbird 257 . . . 4 ((𝜑𝐿 < 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1206, 5, 29iserex 15623 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
121120adantr 480 . . . 4 ((𝜑𝐿 < 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
122119, 121mpbird 257 . . 3 ((𝜑𝐿 < 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
123122ex 412 . 2 (𝜑 → (𝐿 < 1 → seq𝑀( + , 𝐹) ∈ dom ⇝ ))
124 cvgdvgrat.n1 . . . . . 6 (𝜑𝐿 ≠ 1)
125 1red 11175 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
12639, 125lttri2d 11313 . . . . . 6 (𝜑 → (𝐿 ≠ 1 ↔ (𝐿 < 1 ∨ 1 < 𝐿)))
127124, 126mpbid 232 . . . . 5 (𝜑 → (𝐿 < 1 ∨ 1 < 𝐿))
128127orcanai 1004 . . . 4 ((𝜑 ∧ ¬ 𝐿 < 1) → 1 < 𝐿)
129 simplr 768 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝑛𝑊)
130 cvgdvgrat.f . . . . . . . . 9 (𝜑𝐹𝑉)
131130ad3antrrr 730 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝐹𝑉)
13248ad3antrrr 730 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
133132imp 406 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
1341uztrn2 12812 . . . . . . . . . . . 12 ((𝑛𝑊𝑖 ∈ (ℤ𝑛)) → 𝑖𝑊)
13522neeq1d 2984 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ((𝐹𝑘) ≠ 0 ↔ (𝐹𝑖) ≠ 0))
13621, 135imbi12d 344 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)))
137136, 34chvarvv 1989 . . . . . . . . . . . 12 ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)
138134, 137sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑊𝑖 ∈ (ℤ𝑛))) → (𝐹𝑖) ≠ 0)
139138anassrs 467 . . . . . . . . . 10 (((𝜑𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
140139adantllr 719 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
141140adantlr 715 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
14253, 52breq12d 5120 . . . . . . . . . 10 (𝑘 = 𝑖 → ((abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ↔ (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1)))))
143142rspccva 3587 . . . . . . . . 9 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
144143adantll 714 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
1451, 2, 129, 131, 133, 141, 144dvgrat 44301 . . . . . . 7 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
1469adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑁 ∈ ℤ)
147 1re 11174 . . . . . . . . . . 11 1 ∈ ℝ
148 difrp 12991 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
149147, 39, 148sylancr 587 . . . . . . . . . 10 (𝜑 → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
150149biimpa 476 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → (𝐿 − 1) ∈ ℝ+)
15137adantlr 715 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
15210adantr 480 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑅𝐿)
1531, 146, 150, 151, 152climi2 15477 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1))
15475adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
155154adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ∈ ℂ)
156155abscld 15405 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ)
15769adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
158157adantr 480 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
159158abscld 15405 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
16081adantllr 719 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
161160adantr 480 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ≠ 0)
162155, 161absrpcld 15417 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
163162rpcnd 12997 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℂ)
164163mullidd 11192 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
16539ad4antr 732 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℝ)
166165recnd 11202 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℂ)
167 1cnd 11169 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℂ)
168166, 167negsubdi2d 11549 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) = (1 − 𝐿))
169157, 154, 160divcld 11958 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
170169abscld 15405 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
17139ad3antrrr 730 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
172170, 171resubcld 11606 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
173 1red 11175 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℝ)
174171, 173resubcld 11606 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐿 − 1) ∈ ℝ)
175172, 174absltd 15398 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) ↔ (-(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝐿 − 1))))
176175simprbda 498 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
177168, 176eqbrtrrd 5131 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
178 1red 11175 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℝ)
179158, 155, 161divcld 11958 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
180179abscld 15405 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
181178, 180, 165ltsub1d 11787 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ↔ (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)))
182177, 181mpbird 257 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
183158, 155, 161absdivd 15424 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
184182, 183breqtrd 5133 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
185178, 159, 162ltmuldivd 13042 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))) ↔ 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘)))))
186184, 185mpbird 257 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))))
187164, 186eqbrtrrd 5131 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) < (abs‘(𝐹‘(𝑘 + 1))))
188156, 159, 187ltled 11322 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
189188ex 412 . . . . . . . . . 10 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
190189ralimdva 3145 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
191190reximdva 3146 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
192153, 191mpd 15 . . . . . . 7 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
193145, 192r19.29a 3141 . . . . . 6 ((𝜑 ∧ 1 < 𝐿) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
194 df-nel 3030 . . . . . 6 (seq𝑁( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
195193, 194sylib 218 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
196120adantr 480 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
197195, 196mtbird 325 . . . 4 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
198128, 197syldan 591 . . 3 ((𝜑 ∧ ¬ 𝐿 < 1) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
199198ex 412 . 2 (𝜑 → (¬ 𝐿 < 1 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
200123, 199impcon4bid 227 1 (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  c0 4296   class class class wbr 5107  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cz 12529  cuz 12793  +crp 12951  (,)cioo 13306  seqcseq 13966  abscabs 15200  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ioo 13310  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653
This theorem is referenced by:  radcnvrat  44303
  Copyright terms: Public domain W3C validator