Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgdvgrat Structured version   Visualization version   GIF version

Theorem cvgdvgrat 41901
Description: Ratio test for convergence and divergence of a complex infinite series. If the ratio 𝑅 of the absolute values of successive terms in an infinite sequence 𝐹 converges to less than one, then the infinite sum of the terms of 𝐹 converges to a complex number; and if 𝑅 converges greater then the sum diverges. This combined form of cvgrat 15593 and dvgrat 41900 directly uses the limit of the ratio.

(It also demonstrates how to use climi2 15218 and absltd 15139 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15139, and how to use r19.29a 3220 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3215 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3215.) (Contributed by Steve Rodriguez, 28-Feb-2020.)

Hypotheses
Ref Expression
cvgdvgrat.z 𝑍 = (ℤ𝑀)
cvgdvgrat.w 𝑊 = (ℤ𝑁)
cvgdvgrat.n (𝜑𝑁𝑍)
cvgdvgrat.f (𝜑𝐹𝑉)
cvgdvgrat.c ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
cvgdvgrat.n0 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
cvgdvgrat.r 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
cvgdvgrat.cvg (𝜑𝑅𝐿)
cvgdvgrat.n1 (𝜑𝐿 ≠ 1)
Assertion
Ref Expression
cvgdvgrat (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝐿   𝑘,𝑁   𝑘,𝑊   𝑅,𝑘   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem cvgdvgrat
Dummy variables 𝑖 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgdvgrat.w . . . . . . . . 9 𝑊 = (ℤ𝑁)
2 eqid 2740 . . . . . . . . 9 (ℤ𝑛) = (ℤ𝑛)
3 elioore 13108 . . . . . . . . . 10 (𝑟 ∈ (𝐿(,)1) → 𝑟 ∈ ℝ)
43ad3antlr 728 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 ∈ ℝ)
5 cvgdvgrat.n . . . . . . . . . . . . . . . . 17 (𝜑𝑁𝑍)
6 cvgdvgrat.z . . . . . . . . . . . . . . . . 17 𝑍 = (ℤ𝑀)
75, 6eleqtrdi 2851 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ (ℤ𝑀))
8 eluzelz 12591 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
10 cvgdvgrat.cvg . . . . . . . . . . . . . . 15 (𝜑𝑅𝐿)
11 cvgdvgrat.r . . . . . . . . . . . . . . . . . 18 𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
1211a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 = (𝑘𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘)))))
131peano2uzs 12641 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝑊 → (𝑘 + 1) ∈ 𝑊)
14 ovex 7304 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 + 1) ∈ V
15 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝑖𝑊 ↔ (𝑘 + 1) ∈ 𝑊))
1615anbi2d 629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝜑𝑖𝑊) ↔ (𝜑 ∧ (𝑘 + 1) ∈ 𝑊)))
17 fveq2 6771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = (𝑘 + 1) → (𝐹𝑖) = (𝐹‘(𝑘 + 1)))
1817eleq1d 2825 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑘 + 1) → ((𝐹𝑖) ∈ ℂ ↔ (𝐹‘(𝑘 + 1)) ∈ ℂ))
1916, 18imbi12d 345 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑘 + 1) → (((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)))
20 eleq1 2828 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝑘𝑊𝑖𝑊))
2120anbi2d 629 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝜑𝑘𝑊) ↔ (𝜑𝑖𝑊)))
22 fveq2 6771 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2322eleq1d 2825 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
2421, 23imbi12d 345 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)))
251eleq2i 2832 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘𝑊𝑘 ∈ (ℤ𝑁))
266uztrn2 12600 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
275, 26sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
2825, 27sylan2b 594 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑊) → 𝑘𝑍)
29 cvgdvgrat.c . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
3028, 29syldan 591 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
3124, 30chvarvv 2006 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
3214, 19, 31vtocl 3497 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
3313, 32sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
34 cvgdvgrat.n0 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0)
3533, 30, 34divcld 11751 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑊) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
3635abscld 15146 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑊) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
3712, 36fvmpt2d 6885 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
3837, 36eqeltrd 2841 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑊) → (𝑅𝑘) ∈ ℝ)
391, 9, 10, 38climrecl 15290 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ ℝ)
4039rexrd 11026 . . . . . . . . . . . . 13 (𝜑𝐿 ∈ ℝ*)
41 1xr 11035 . . . . . . . . . . . . 13 1 ∈ ℝ*
42 elioo2 13119 . . . . . . . . . . . . 13 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4340, 41, 42sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝑟 ∈ (𝐿(,)1) ↔ (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1)))
4443biimpa 477 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟 ∈ ℝ ∧ 𝐿 < 𝑟𝑟 < 1))
4544simp3d 1143 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑟 < 1)
4645ad2antrr 723 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑟 < 1)
47 simplr 766 . . . . . . . . 9 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → 𝑛𝑊)
4831ex 413 . . . . . . . . . . 11 (𝜑 → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
4948ad3antrrr 727 . . . . . . . . . 10 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
5049imp 407 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
51 fvoveq1 7294 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑖 + 1)))
5251fveq2d 6775 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (abs‘(𝐹‘(𝑘 + 1))) = (abs‘(𝐹‘(𝑖 + 1))))
5322fveq2d 6775 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (abs‘(𝐹𝑘)) = (abs‘(𝐹𝑖)))
5453oveq2d 7287 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑟 · (abs‘(𝐹𝑘))) = (𝑟 · (abs‘(𝐹𝑖))))
5552, 54breq12d 5092 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ↔ (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖)))))
5655rspccva 3560 . . . . . . . . . 10 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
5756adantll 711 . . . . . . . . 9 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹‘(𝑖 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑖))))
581, 2, 4, 46, 47, 50, 57cvgrat 15593 . . . . . . . 8 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
599adantr 481 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑁 ∈ ℤ)
6044simp2d 1142 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝐿 < 𝑟)
61 difrp 12767 . . . . . . . . . . . 12 ((𝐿 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6239, 3, 61syl2an 596 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝐿 < 𝑟 ↔ (𝑟𝐿) ∈ ℝ+))
6360, 62mpbid 231 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → (𝑟𝐿) ∈ ℝ+)
6437adantlr 712 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
6510adantr 481 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝐿(,)1)) → 𝑅𝐿)
661, 59, 63, 64, 65climi2 15218 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿))
671uztrn2 12600 . . . . . . . . . . . . . . . . . 18 ((𝑛𝑊𝑘 ∈ (ℤ𝑛)) → 𝑘𝑊)
6867, 33sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
6968anassrs 468 . . . . . . . . . . . . . . . 16 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7069adantllr 716 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7170adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
7271abscld 15146 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
733ad4antlr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℝ)
7467, 30sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ∈ ℂ)
7574anassrs 468 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7675adantllr 716 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
7776adantr 481 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ∈ ℂ)
7877abscld 15146 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ)
7973, 78remulcld 11006 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝑟 · (abs‘(𝐹𝑘))) ∈ ℝ)
8067, 34sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑛𝑊𝑘 ∈ (ℤ𝑛))) → (𝐹𝑘) ≠ 0)
8180anassrs 468 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8281adantllr 716 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
8382adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (𝐹𝑘) ≠ 0)
8471, 77, 83absdivd 15165 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
8570, 76, 82divcld 11751 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
8685abscld 15146 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
8739ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
8886, 87resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
893ad3antlr 728 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ)
9089, 87resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝑟𝐿) ∈ ℝ)
9188, 90absltd 15139 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) ↔ (-(𝑟𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))))
9291simplbda 500 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿))
9371, 77, 83divcld 11751 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
9493abscld 15146 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
9539ad4antr 729 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝐿 ∈ ℝ)
9694, 73, 95ltsub1d 11584 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟 ↔ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝑟𝐿)))
9792, 96mpbird 256 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) < 𝑟)
9884, 97eqbrtrrd 5103 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟)
9977, 83absrpcld 15158 . . . . . . . . . . . . . . . 16 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
10072, 73, 99ltdivmuld 12822 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))) < 𝑟 ↔ (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟)))
10198, 100mpbid 231 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < ((abs‘(𝐹𝑘)) · 𝑟))
10299rpcnd 12773 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹𝑘)) ∈ ℂ)
10373recnd 11004 . . . . . . . . . . . . . . 15 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → 𝑟 ∈ ℂ)
104102, 103mulcomd 10997 . . . . . . . . . . . . . 14 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → ((abs‘(𝐹𝑘)) · 𝑟) = (𝑟 · (abs‘(𝐹𝑘))))
105101, 104breqtrd 5105 . . . . . . . . . . . . 13 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) < (𝑟 · (abs‘(𝐹𝑘))))
10672, 79, 105ltled 11123 . . . . . . . . . . . 12 (((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿)) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
107106ex 413 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
108107ralimdva 3105 . . . . . . . . . 10 (((𝜑𝑟 ∈ (𝐿(,)1)) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
109108reximdva 3205 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝐿(,)1)) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝑟𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘)))))
11066, 109mpd 15 . . . . . . . 8 ((𝜑𝑟 ∈ (𝐿(,)1)) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹‘(𝑘 + 1))) ≤ (𝑟 · (abs‘(𝐹𝑘))))
11158, 110r19.29a 3220 . . . . . . 7 ((𝜑𝑟 ∈ (𝐿(,)1)) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
112111ralrimiva 3110 . . . . . 6 (𝜑 → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
113112adantr 481 . . . . 5 ((𝜑𝐿 < 1) → ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ )
114 ioon0 13104 . . . . . . . 8 ((𝐿 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
11540, 41, 114sylancl 586 . . . . . . 7 (𝜑 → ((𝐿(,)1) ≠ ∅ ↔ 𝐿 < 1))
116115biimpar 478 . . . . . 6 ((𝜑𝐿 < 1) → (𝐿(,)1) ≠ ∅)
117 r19.3rzv 4435 . . . . . 6 ((𝐿(,)1) ≠ ∅ → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
118116, 117syl 17 . . . . 5 ((𝜑𝐿 < 1) → (seq𝑁( + , 𝐹) ∈ dom ⇝ ↔ ∀𝑟 ∈ (𝐿(,)1)seq𝑁( + , 𝐹) ∈ dom ⇝ ))
119113, 118mpbird 256 . . . 4 ((𝜑𝐿 < 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ )
1206, 5, 29iserex 15366 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
121120adantr 481 . . . 4 ((𝜑𝐿 < 1) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
122119, 121mpbird 256 . . 3 ((𝜑𝐿 < 1) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
123122ex 413 . 2 (𝜑 → (𝐿 < 1 → seq𝑀( + , 𝐹) ∈ dom ⇝ ))
124 cvgdvgrat.n1 . . . . . 6 (𝜑𝐿 ≠ 1)
125 1red 10977 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
12639, 125lttri2d 11114 . . . . . 6 (𝜑 → (𝐿 ≠ 1 ↔ (𝐿 < 1 ∨ 1 < 𝐿)))
127124, 126mpbid 231 . . . . 5 (𝜑 → (𝐿 < 1 ∨ 1 < 𝐿))
128127orcanai 1000 . . . 4 ((𝜑 ∧ ¬ 𝐿 < 1) → 1 < 𝐿)
129 simplr 766 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝑛𝑊)
130 cvgdvgrat.f . . . . . . . . 9 (𝜑𝐹𝑉)
131130ad3antrrr 727 . . . . . . . 8 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → 𝐹𝑉)
13248ad3antrrr 727 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → (𝑖𝑊 → (𝐹𝑖) ∈ ℂ))
133132imp 407 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖𝑊) → (𝐹𝑖) ∈ ℂ)
1341uztrn2 12600 . . . . . . . . . . . 12 ((𝑛𝑊𝑖 ∈ (ℤ𝑛)) → 𝑖𝑊)
13522neeq1d 3005 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → ((𝐹𝑘) ≠ 0 ↔ (𝐹𝑖) ≠ 0))
13621, 135imbi12d 345 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (((𝜑𝑘𝑊) → (𝐹𝑘) ≠ 0) ↔ ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)))
137136, 34chvarvv 2006 . . . . . . . . . . . 12 ((𝜑𝑖𝑊) → (𝐹𝑖) ≠ 0)
138134, 137sylan2 593 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛𝑊𝑖 ∈ (ℤ𝑛))) → (𝐹𝑖) ≠ 0)
139138anassrs 468 . . . . . . . . . 10 (((𝜑𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
140139adantllr 716 . . . . . . . . 9 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
141140adantlr 712 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (𝐹𝑖) ≠ 0)
14253, 52breq12d 5092 . . . . . . . . . 10 (𝑘 = 𝑖 → ((abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ↔ (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1)))))
143142rspccva 3560 . . . . . . . . 9 ((∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
144143adantll 711 . . . . . . . 8 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ∧ 𝑖 ∈ (ℤ𝑛)) → (abs‘(𝐹𝑖)) ≤ (abs‘(𝐹‘(𝑖 + 1))))
1451, 2, 129, 131, 133, 141, 144dvgrat 41900 . . . . . . 7 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
1469adantr 481 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑁 ∈ ℤ)
147 1re 10976 . . . . . . . . . . 11 1 ∈ ℝ
148 difrp 12767 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
149147, 39, 148sylancr 587 . . . . . . . . . 10 (𝜑 → (1 < 𝐿 ↔ (𝐿 − 1) ∈ ℝ+))
150149biimpa 477 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → (𝐿 − 1) ∈ ℝ+)
15137adantlr 712 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑘𝑊) → (𝑅𝑘) = (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
15210adantr 481 . . . . . . . . 9 ((𝜑 ∧ 1 < 𝐿) → 𝑅𝐿)
1531, 146, 150, 151, 152climi2 15218 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1))
15475adantllr 716 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℂ)
155154adantr 481 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ∈ ℂ)
156155abscld 15146 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ)
15769adantllr 716 . . . . . . . . . . . . . 14 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
158157adantr 481 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹‘(𝑘 + 1)) ∈ ℂ)
159158abscld 15146 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹‘(𝑘 + 1))) ∈ ℝ)
16081adantllr 716 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ≠ 0)
161160adantr 481 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (𝐹𝑘) ≠ 0)
162155, 161absrpcld 15158 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℝ+)
163162rpcnd 12773 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ∈ ℂ)
164163mulid2d 10994 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
16539ad4antr 729 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℝ)
166165recnd 11004 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 𝐿 ∈ ℂ)
167 1cnd 10971 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℂ)
168166, 167negsubdi2d 11348 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) = (1 − 𝐿))
169157, 154, 160divcld 11751 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
170169abscld 15146 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
17139ad3antrrr 727 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐿 ∈ ℝ)
172170, 171resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∈ ℝ)
173 1red 10977 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → 1 ∈ ℝ)
174171, 173resubcld 11403 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐿 − 1) ∈ ℝ)
175172, 174absltd 15139 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) ↔ (-(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) ∧ ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿) < (𝐿 − 1))))
176175simprbda 499 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → -(𝐿 − 1) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
177168, 176eqbrtrrd 5103 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿))
178 1red 10977 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 ∈ ℝ)
179158, 155, 161divcld 11751 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((𝐹‘(𝑘 + 1)) / (𝐹𝑘)) ∈ ℂ)
180179abscld 15146 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ∈ ℝ)
181178, 180, 165ltsub1d 11584 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) ↔ (1 − 𝐿) < ((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)))
182177, 181mpbird 256 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))))
183158, 155, 161absdivd 15165 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) = ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
184182, 183breqtrd 5105 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘))))
185178, 159, 162ltmuldivd 12818 . . . . . . . . . . . . . 14 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → ((1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))) ↔ 1 < ((abs‘(𝐹‘(𝑘 + 1))) / (abs‘(𝐹𝑘)))))
186184, 185mpbird 256 . . . . . . . . . . . . 13 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (1 · (abs‘(𝐹𝑘))) < (abs‘(𝐹‘(𝑘 + 1))))
187164, 186eqbrtrrd 5103 . . . . . . . . . . . 12 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) < (abs‘(𝐹‘(𝑘 + 1))))
188156, 159, 187ltled 11123 . . . . . . . . . . 11 (((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) ∧ (abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1)) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
189188ex 413 . . . . . . . . . 10 ((((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → (abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
190189ralimdva 3105 . . . . . . . . 9 (((𝜑 ∧ 1 < 𝐿) ∧ 𝑛𝑊) → (∀𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∀𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
191190reximdva 3205 . . . . . . . 8 ((𝜑 ∧ 1 < 𝐿) → (∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘((abs‘((𝐹‘(𝑘 + 1)) / (𝐹𝑘))) − 𝐿)) < (𝐿 − 1) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))))
192153, 191mpd 15 . . . . . . 7 ((𝜑 ∧ 1 < 𝐿) → ∃𝑛𝑊𝑘 ∈ (ℤ𝑛)(abs‘(𝐹𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1))))
193145, 192r19.29a 3220 . . . . . 6 ((𝜑 ∧ 1 < 𝐿) → seq𝑁( + , 𝐹) ∉ dom ⇝ )
194 df-nel 3052 . . . . . 6 (seq𝑁( + , 𝐹) ∉ dom ⇝ ↔ ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
195193, 194sylib 217 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑁( + , 𝐹) ∈ dom ⇝ )
196120adantr 481 . . . . 5 ((𝜑 ∧ 1 < 𝐿) → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
197195, 196mtbird 325 . . . 4 ((𝜑 ∧ 1 < 𝐿) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
198128, 197syldan 591 . . 3 ((𝜑 ∧ ¬ 𝐿 < 1) → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ )
199198ex 413 . 2 (𝜑 → (¬ 𝐿 < 1 → ¬ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
200123, 199impcon4bid 226 1 (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wnel 3051  wral 3066  wrex 3067  c0 4262   class class class wbr 5079  cmpt 5162  dom cdm 5590  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872  1c1 10873   + caddc 10875   · cmul 10877  *cxr 11009   < clt 11010  cle 11011  cmin 11205  -cneg 11206   / cdiv 11632  cz 12319  cuz 12581  +crp 12729  (,)cioo 13078  seqcseq 13719  abscabs 14943  cli 15191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-pm 8601  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-ioo 13082  df-ico 13084  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396
This theorem is referenced by:  radcnvrat  41902
  Copyright terms: Public domain W3C validator