MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqlt2 Structured version   Visualization version   GIF version

Theorem om2noseqlt2 28306
Description: The mapping 𝐺 preserves order. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqlt2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ (𝐺𝐴) <s (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqlt2
StepHypRef Expression
1 om2noseq.1 . . 3 (𝜑𝐶 No )
2 om2noseq.2 . . 3 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
41, 2, 3om2noseqlt 28305 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
51, 2, 3om2noseqlt 28305 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝐵𝐴 → (𝐺𝐵) <s (𝐺𝐴)))
65ancom2s 650 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝐺𝐵) <s (𝐺𝐴)))
7 fveq2 6906 . . . . 5 (𝐵 = 𝐴 → (𝐺𝐵) = (𝐺𝐴))
87a1i 11 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 = 𝐴 → (𝐺𝐵) = (𝐺𝐴)))
96, 8orim12d 967 . . 3 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵𝐴𝐵 = 𝐴) → ((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴))))
10 nnon 7893 . . . . 5 (𝐵 ∈ ω → 𝐵 ∈ On)
11 nnon 7893 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
12 onsseleq 6425 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
13 ontri1 6418 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1412, 13bitr3d 281 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝐵))
1510, 11, 14syl2anr 597 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝐵))
1615adantl 481 . . 3 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝐵))
171, 2, 3om2noseqfo 28304 . . . . . . . 8 (𝜑𝐺:ω–onto𝑍)
18 fof 6820 . . . . . . . 8 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
1917, 18syl 17 . . . . . . 7 (𝜑𝐺:ω⟶𝑍)
203, 1noseqssno 28300 . . . . . . 7 (𝜑𝑍 No )
2119, 20fssd 6753 . . . . . 6 (𝜑𝐺:ω⟶ No )
2221ffvelcdmda 7104 . . . . 5 ((𝜑𝐵 ∈ ω) → (𝐺𝐵) ∈ No )
2322adantrl 716 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺𝐵) ∈ No )
2421ffvelcdmda 7104 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) ∈ No )
2524adantrr 717 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺𝐴) ∈ No )
26 sleloe 27799 . . . . 5 (((𝐺𝐵) ∈ No ∧ (𝐺𝐴) ∈ No ) → ((𝐺𝐵) ≤s (𝐺𝐴) ↔ ((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴))))
27 slenlt 27797 . . . . 5 (((𝐺𝐵) ∈ No ∧ (𝐺𝐴) ∈ No ) → ((𝐺𝐵) ≤s (𝐺𝐴) ↔ ¬ (𝐺𝐴) <s (𝐺𝐵)))
2826, 27bitr3d 281 . . . 4 (((𝐺𝐵) ∈ No ∧ (𝐺𝐴) ∈ No ) → (((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴)) ↔ ¬ (𝐺𝐴) <s (𝐺𝐵)))
2923, 25, 28syl2anc 584 . . 3 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴)) ↔ ¬ (𝐺𝐴) <s (𝐺𝐵)))
309, 16, 293imtr3d 293 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (¬ 𝐴𝐵 → ¬ (𝐺𝐴) <s (𝐺𝐵)))
314, 30impcon4bid 227 1 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ (𝐺𝐴) <s (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951   class class class wbr 5143  cmpt 5225  cres 5687  cima 5688  Oncon0 6384  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  ωcom 7887  reccrdg 8449   No csur 27684   <s cslt 27685   ≤s csle 27789   1s c1s 27868   +s cadds 27992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec2 27982  df-adds 27993
This theorem is referenced by:  om2noseqiso  28308
  Copyright terms: Public domain W3C validator