MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqlt2 Structured version   Visualization version   GIF version

Theorem om2noseqlt2 28234
Description: The mapping 𝐺 preserves order. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqlt2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ (𝐺𝐴) <s (𝐺𝐵)))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqlt2
StepHypRef Expression
1 om2noseq.1 . . 3 (𝜑𝐶 No )
2 om2noseq.2 . . 3 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . 3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
41, 2, 3om2noseqlt 28233 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐺𝐴) <s (𝐺𝐵)))
51, 2, 3om2noseqlt 28233 . . . . 5 ((𝜑 ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝐵𝐴 → (𝐺𝐵) <s (𝐺𝐴)))
65ancom2s 650 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵𝐴 → (𝐺𝐵) <s (𝐺𝐴)))
7 fveq2 6840 . . . . 5 (𝐵 = 𝐴 → (𝐺𝐵) = (𝐺𝐴))
87a1i 11 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 = 𝐴 → (𝐺𝐵) = (𝐺𝐴)))
96, 8orim12d 966 . . 3 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵𝐴𝐵 = 𝐴) → ((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴))))
10 nnon 7828 . . . . 5 (𝐵 ∈ ω → 𝐵 ∈ On)
11 nnon 7828 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ On)
12 onsseleq 6361 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ (𝐵𝐴𝐵 = 𝐴)))
13 ontri1 6354 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
1412, 13bitr3d 281 . . . . 5 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝐵))
1510, 11, 14syl2anr 597 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝐵))
1615adantl 481 . . 3 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝐵))
171, 2, 3om2noseqfo 28232 . . . . . . . 8 (𝜑𝐺:ω–onto𝑍)
18 fof 6754 . . . . . . . 8 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
1917, 18syl 17 . . . . . . 7 (𝜑𝐺:ω⟶𝑍)
203, 1noseqssno 28228 . . . . . . 7 (𝜑𝑍 No )
2119, 20fssd 6687 . . . . . 6 (𝜑𝐺:ω⟶ No )
2221ffvelcdmda 7038 . . . . 5 ((𝜑𝐵 ∈ ω) → (𝐺𝐵) ∈ No )
2322adantrl 716 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺𝐵) ∈ No )
2421ffvelcdmda 7038 . . . . 5 ((𝜑𝐴 ∈ ω) → (𝐺𝐴) ∈ No )
2524adantrr 717 . . . 4 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺𝐴) ∈ No )
26 sleloe 27699 . . . . 5 (((𝐺𝐵) ∈ No ∧ (𝐺𝐴) ∈ No ) → ((𝐺𝐵) ≤s (𝐺𝐴) ↔ ((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴))))
27 slenlt 27697 . . . . 5 (((𝐺𝐵) ∈ No ∧ (𝐺𝐴) ∈ No ) → ((𝐺𝐵) ≤s (𝐺𝐴) ↔ ¬ (𝐺𝐴) <s (𝐺𝐵)))
2826, 27bitr3d 281 . . . 4 (((𝐺𝐵) ∈ No ∧ (𝐺𝐴) ∈ No ) → (((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴)) ↔ ¬ (𝐺𝐴) <s (𝐺𝐵)))
2923, 25, 28syl2anc 584 . . 3 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐺𝐵) <s (𝐺𝐴) ∨ (𝐺𝐵) = (𝐺𝐴)) ↔ ¬ (𝐺𝐴) <s (𝐺𝐵)))
309, 16, 293imtr3d 293 . 2 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (¬ 𝐴𝐵 → ¬ (𝐺𝐴) <s (𝐺𝐵)))
314, 30impcon4bid 227 1 ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 ↔ (𝐺𝐴) <s (𝐺𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  cres 5633  cima 5634  Oncon0 6320  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354   No csur 27584   <s cslt 27585   ≤s csle 27689   1s c1s 27772   +s cadds 27906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-1s 27774  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec2 27896  df-adds 27907
This theorem is referenced by:  om2noseqiso  28236
  Copyright terms: Public domain W3C validator