![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2noseqlt2 | Structured version Visualization version GIF version |
Description: The mapping 𝐺 preserves order. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
Ref | Expression |
---|---|
om2noseqlt2 | ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2noseq.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
2 | om2noseq.2 | . . 3 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
3 | om2noseq.3 | . . 3 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
4 | 1, 2, 3 | om2noseqlt 28273 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
5 | 1, 2, 3 | om2noseqlt 28273 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) <s (𝐺‘𝐴))) |
6 | 5 | ancom2s 648 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) <s (𝐺‘𝐴))) |
7 | fveq2 6901 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴)) | |
8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴))) |
9 | 6, 8 | orim12d 962 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
10 | nnon 7882 | . . . . 5 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
11 | nnon 7882 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
12 | onsseleq 6417 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
13 | ontri1 6410 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
14 | 12, 13 | bitr3d 280 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
15 | 10, 11, 14 | syl2anr 595 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
16 | 15 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
17 | 1, 2, 3 | om2noseqfo 28272 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
18 | fof 6815 | . . . . . . . 8 ⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺:ω⟶𝑍) |
20 | 3, 1 | noseqssno 28268 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ No ) |
21 | 19, 20 | fssd 6745 | . . . . . 6 ⊢ (𝜑 → 𝐺:ω⟶ No ) |
22 | 21 | ffvelcdmda 7098 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ ω) → (𝐺‘𝐵) ∈ No ) |
23 | 22 | adantrl 714 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺‘𝐵) ∈ No ) |
24 | 21 | ffvelcdmda 7098 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) ∈ No ) |
25 | 24 | adantrr 715 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺‘𝐴) ∈ No ) |
26 | sleloe 27784 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ No ∧ (𝐺‘𝐴) ∈ No ) → ((𝐺‘𝐵) ≤s (𝐺‘𝐴) ↔ ((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) | |
27 | slenlt 27782 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ No ∧ (𝐺‘𝐴) ∈ No ) → ((𝐺‘𝐵) ≤s (𝐺‘𝐴) ↔ ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) | |
28 | 26, 27 | bitr3d 280 | . . . 4 ⊢ (((𝐺‘𝐵) ∈ No ∧ (𝐺‘𝐴) ∈ No ) → (((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
29 | 23, 25, 28 | syl2anc 582 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
30 | 9, 16, 29 | 3imtr3d 292 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
31 | 4, 30 | impcon4bid 226 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 class class class wbr 5153 ↦ cmpt 5236 ↾ cres 5684 “ cima 5685 Oncon0 6376 ⟶wf 6550 –onto→wfo 6552 ‘cfv 6554 (class class class)co 7424 ωcom 7876 reccrdg 8439 No csur 27669 <s cslt 27670 ≤s csle 27774 1s c1s 27853 +s cadds 27973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-ot 4642 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-oadd 8500 df-nadd 8696 df-no 27672 df-slt 27673 df-bday 27674 df-sle 27775 df-sslt 27811 df-scut 27813 df-0s 27854 df-1s 27855 df-made 27871 df-old 27872 df-left 27874 df-right 27875 df-norec2 27963 df-adds 27974 |
This theorem is referenced by: om2noseqiso 28276 |
Copyright terms: Public domain | W3C validator |