| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2noseqlt2 | Structured version Visualization version GIF version | ||
| Description: The mapping 𝐺 preserves order. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| Ref | Expression |
|---|---|
| om2noseqlt2 | ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . 3 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . 3 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqlt 28198 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 → (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 5 | 1, 2, 3 | om2noseqlt 28198 | . . . . 5 ⊢ ((𝜑 ∧ (𝐵 ∈ ω ∧ 𝐴 ∈ ω)) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) <s (𝐺‘𝐴))) |
| 6 | 5 | ancom2s 650 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 ∈ 𝐴 → (𝐺‘𝐵) <s (𝐺‘𝐴))) |
| 7 | fveq2 6822 | . . . . 5 ⊢ (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴)) | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐵 = 𝐴 → (𝐺‘𝐵) = (𝐺‘𝐴))) |
| 9 | 6, 8 | orim12d 966 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) → ((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) |
| 10 | nnon 7805 | . . . . 5 ⊢ (𝐵 ∈ ω → 𝐵 ∈ On) | |
| 11 | nnon 7805 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 12 | onsseleq 6348 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) | |
| 13 | ontri1 6341 | . . . . . 6 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 14 | 12, 13 | bitr3d 281 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 15 | 10, 11, 14 | syl2anr 597 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 16 | 15 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴) ↔ ¬ 𝐴 ∈ 𝐵)) |
| 17 | 1, 2, 3 | om2noseqfo 28197 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
| 18 | fof 6736 | . . . . . . . 8 ⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) | |
| 19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐺:ω⟶𝑍) |
| 20 | 3, 1 | noseqssno 28193 | . . . . . . 7 ⊢ (𝜑 → 𝑍 ⊆ No ) |
| 21 | 19, 20 | fssd 6669 | . . . . . 6 ⊢ (𝜑 → 𝐺:ω⟶ No ) |
| 22 | 21 | ffvelcdmda 7018 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ ω) → (𝐺‘𝐵) ∈ No ) |
| 23 | 22 | adantrl 716 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺‘𝐵) ∈ No ) |
| 24 | 21 | ffvelcdmda 7018 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ω) → (𝐺‘𝐴) ∈ No ) |
| 25 | 24 | adantrr 717 | . . . 4 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐺‘𝐴) ∈ No ) |
| 26 | sleloe 27664 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ No ∧ (𝐺‘𝐴) ∈ No ) → ((𝐺‘𝐵) ≤s (𝐺‘𝐴) ↔ ((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)))) | |
| 27 | slenlt 27662 | . . . . 5 ⊢ (((𝐺‘𝐵) ∈ No ∧ (𝐺‘𝐴) ∈ No ) → ((𝐺‘𝐵) ≤s (𝐺‘𝐴) ↔ ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) | |
| 28 | 26, 27 | bitr3d 281 | . . . 4 ⊢ (((𝐺‘𝐵) ∈ No ∧ (𝐺‘𝐴) ∈ No ) → (((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 29 | 23, 25, 28 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐺‘𝐵) <s (𝐺‘𝐴) ∨ (𝐺‘𝐵) = (𝐺‘𝐴)) ↔ ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 30 | 9, 16, 29 | 3imtr3d 293 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (¬ 𝐴 ∈ 𝐵 → ¬ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| 31 | 4, 30 | impcon4bid 227 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴 ∈ 𝐵 ↔ (𝐺‘𝐴) <s (𝐺‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 ↦ cmpt 5173 ↾ cres 5621 “ cima 5622 Oncon0 6307 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 (class class class)co 7349 ωcom 7799 reccrdg 8331 No csur 27549 <s cslt 27550 ≤s csle 27654 1s c1s 27737 +s cadds 27871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-nadd 8584 df-no 27552 df-slt 27553 df-bday 27554 df-sle 27655 df-sslt 27692 df-scut 27694 df-0s 27738 df-1s 27739 df-made 27757 df-old 27758 df-left 27760 df-right 27761 df-norec2 27861 df-adds 27872 |
| This theorem is referenced by: om2noseqiso 28201 |
| Copyright terms: Public domain | W3C validator |