MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif Structured version   Visualization version   GIF version

Theorem indif 4244
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem indif
StepHypRef Expression
1 dfin4 4242 . 2 (𝐴 ∩ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
2 dfin4 4242 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
32difeq2i 4094 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
4 difin 4236 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
51, 3, 43eqtr2i 2848 1 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1531  cdif 3931  cin 3933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-rab 3145  df-v 3495  df-dif 3937  df-in 3941  df-ss 3950
This theorem is referenced by:  resdif  6628  kmlem11  9578  psgndiflemB  20736
  Copyright terms: Public domain W3C validator