| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indif | Structured version Visualization version GIF version | ||
| Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| indif | ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin4 4258 | . 2 ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴 ∖ 𝐵))) | |
| 2 | dfin4 4258 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
| 3 | 2 | difeq2i 4103 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴 ∖ 𝐵))) |
| 4 | difin 4252 | . 2 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 5 | 1, 3, 4 | 3eqtr2i 2765 | 1 ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3928 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 |
| This theorem is referenced by: resdif 6844 kmlem11 10180 psgndiflemB 21565 |
| Copyright terms: Public domain | W3C validator |