MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif Structured version   Visualization version   GIF version

Theorem indif 4229
Description: Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
indif (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem indif
StepHypRef Expression
1 dfin4 4227 . 2 (𝐴 ∩ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
2 dfin4 4227 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
32difeq2i 4072 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ (𝐴 ∖ (𝐴𝐵)))
4 difin 4221 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
51, 3, 43eqtr2i 2762 1 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3895  cin 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915
This theorem is referenced by:  resdif  6792  kmlem11  10063  psgndiflemB  21546
  Copyright terms: Public domain W3C validator