Step | Hyp | Ref
| Expression |
1 | | elrabi 3619 |
. . . . 5
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 ∈ 𝑃) |
2 | | eqid 2739 |
. . . . . 6
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
3 | | psgnfix.p |
. . . . . 6
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
4 | 2, 3 | symgbasf 18964 |
. . . . 5
⊢ (𝑄 ∈ 𝑃 → 𝑄:𝑁⟶𝑁) |
5 | | ffn 6596 |
. . . . 5
⊢ (𝑄:𝑁⟶𝑁 → 𝑄 Fn 𝑁) |
6 | 1, 4, 5 | 3syl 18 |
. . . 4
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 Fn 𝑁) |
7 | 6 | ad3antlr 727 |
. . 3
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑄 Fn 𝑁) |
8 | | simpl 482 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → 𝑁 ∈ Fin) |
10 | 9 | adantr 480 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑁 ∈ Fin) |
11 | | simp1 1134 |
. . . . 5
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑈 ∈ Word 𝑅) |
12 | | psgnfix.z |
. . . . . 6
⊢ 𝑍 = (SymGrp‘𝑁) |
13 | 12 | eqcomi 2748 |
. . . . . . . 8
⊢
(SymGrp‘𝑁) =
𝑍 |
14 | 13 | fveq2i 6771 |
. . . . . . 7
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘𝑍) |
15 | 3, 14 | eqtri 2767 |
. . . . . 6
⊢ 𝑃 = (Base‘𝑍) |
16 | | psgnfix.r |
. . . . . 6
⊢ 𝑅 = ran (pmTrsp‘𝑁) |
17 | 12, 15, 16 | gsmtrcl 19105 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑈 ∈ Word 𝑅) → (𝑍 Σg 𝑈) ∈ 𝑃) |
18 | 10, 11, 17 | syl2an 595 |
. . . 4
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) ∈ 𝑃) |
19 | 2, 3 | symgbasf 18964 |
. . . 4
⊢ ((𝑍 Σg
𝑈) ∈ 𝑃 → (𝑍 Σg 𝑈):𝑁⟶𝑁) |
20 | | ffn 6596 |
. . . 4
⊢ ((𝑍 Σg
𝑈):𝑁⟶𝑁 → (𝑍 Σg 𝑈) Fn 𝑁) |
21 | 18, 19, 20 | 3syl 18 |
. . 3
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) Fn 𝑁) |
22 | 8 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑁 ∈ Fin) |
23 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) |
24 | 23 | ad3antrrr 726 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝐾 ∈ 𝑁) |
25 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑍) =
(Base‘𝑍) |
26 | 16, 12, 25 | symgtrf 19058 |
. . . . . . . . . . . . . . 15
⊢ 𝑅 ⊆ (Base‘𝑍) |
27 | | sswrd 14206 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ⊆ (Base‘𝑍) → Word 𝑅 ⊆ Word (Base‘𝑍)) |
28 | 27 | sseld 3924 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ⊆ (Base‘𝑍) → (𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word (Base‘𝑍))) |
29 | 26, 28 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word (Base‘𝑍)) |
30 | 29 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑈 ∈ Word (Base‘𝑍)) |
31 | 30 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑈 ∈ Word (Base‘𝑍)) |
32 | 22, 24, 31 | 3jca 1126 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word (Base‘𝑍))) |
33 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ((𝑈‘𝑖)‘𝐾) = 𝐾) |
34 | 33 | ralimi 3088 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
(0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
35 | 34 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
36 | 35 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) |
37 | | oveq2 7276 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝑈) =
(♯‘𝑊) →
(0..^(♯‘𝑈)) =
(0..^(♯‘𝑊))) |
38 | 37 | eqcoms 2747 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑊) =
(♯‘𝑈) →
(0..^(♯‘𝑈)) =
(0..^(♯‘𝑊))) |
39 | 38 | raleqdv 3346 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑊) =
(♯‘𝑈) →
(∀𝑖 ∈
(0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾)) |
40 | 39 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾)) |
41 | 40 | adantl 481 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾)) |
42 | 36, 41 | mpbird 256 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾) |
43 | 12, 25 | gsmsymgrfix 19017 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word (Base‘𝑍)) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾)) |
44 | 32, 42, 43 | sylc 65 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾) |
45 | 44 | eqcomd 2745 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾)) |
46 | 45 | adantr 480 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾)) |
47 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑄‘𝑘) = (𝑄‘𝐾)) |
48 | | fveq1 6767 |
. . . . . . . . . . . . 13
⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) |
49 | 48 | eqeq1d 2741 |
. . . . . . . . . . . 12
⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐾 ↔ (𝑄‘𝐾) = 𝐾)) |
50 | 49 | elrab 3625 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐾)) |
51 | 50 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑄‘𝐾) = 𝐾) |
52 | 51 | ad3antlr 727 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑄‘𝐾) = 𝐾) |
53 | 47, 52 | sylan9eqr 2801 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄‘𝑘) = 𝐾) |
54 | | fveq2 6768 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾)) |
55 | 54 | adantl 481 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾)) |
56 | 46, 53, 55 | 3eqtr4d 2789 |
. . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) |
57 | 56 | ex 412 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑘 = 𝐾 → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) |
58 | 57 | adantr 480 |
. . . . 5
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑘 = 𝐾 → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) |
59 | 58 | com12 32 |
. . . 4
⊢ (𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) |
60 | | fveq1 6767 |
. . . . . . . . 9
⊢ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) |
61 | 60 | adantl 481 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) |
62 | 61 | ad3antlr 727 |
. . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) |
63 | 62 | adantl 481 |
. . . . . 6
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) |
64 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
65 | | neqne 2952 |
. . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝐾 → 𝑘 ≠ 𝐾) |
66 | 64, 65 | anim12i 612 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐾) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾)) |
67 | | eldifsn 4725 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾)) |
68 | 66, 67 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾})) |
69 | 68 | fvresd 6788 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐾) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)) |
70 | 69 | exp31 419 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑘 ∈ 𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)))) |
71 | 70 | ad3antrrr 726 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑘 ∈ 𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)))) |
72 | 71 | imp 406 |
. . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘))) |
73 | 72 | impcom 407 |
. . . . . 6
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)) |
74 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝑆 Σg 𝑊)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑘)) |
75 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝑍 Σg 𝑈)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑘)) |
76 | 74, 75 | eqeq12d 2755 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) |
77 | | diffi 8927 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) |
78 | 77 | ancri 549 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ Fin → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin)) |
79 | 78 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin)) |
80 | 79 | ad3antrrr 726 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin)) |
81 | | psgnfix.t |
. . . . . . . . . . . . . . 15
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) |
82 | | psgnfix.s |
. . . . . . . . . . . . . . 15
⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) |
83 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑆) =
(Base‘𝑆) |
84 | 81, 82, 83 | symgtrf 19058 |
. . . . . . . . . . . . . 14
⊢ 𝑇 ⊆ (Base‘𝑆) |
85 | | sswrd 14206 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ⊆ (Base‘𝑆) → Word 𝑇 ⊆ Word (Base‘𝑆)) |
86 | 85 | sseld 3924 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ⊆ (Base‘𝑆) → (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word (Base‘𝑆))) |
87 | 84, 86 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word (Base‘𝑆)) |
88 | 87 | ad2antrl 724 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑊 ∈ Word (Base‘𝑆)) |
89 | 88 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑊 ∈ Word (Base‘𝑆)) |
90 | | simpr2 1193 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (♯‘𝑊) = (♯‘𝑈)) |
91 | 89, 31, 90 | 3jca 1126 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))) |
92 | 80, 91 | jca 511 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈)))) |
93 | 92 | ad2antrl 724 |
. . . . . . . 8
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈)))) |
94 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
95 | 94 | ralimi 3088 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
(0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
96 | 95 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
97 | 96 | adantl 481 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
98 | 97 | ad2antrl 724 |
. . . . . . . 8
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) |
99 | | incom 4139 |
. . . . . . . . . . 11
⊢ ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∩ (𝑁 ∖ {𝐾})) |
100 | | indif 4208 |
. . . . . . . . . . 11
⊢ (𝑁 ∩ (𝑁 ∖ {𝐾})) = (𝑁 ∖ {𝐾}) |
101 | 99, 100 | eqtri 2767 |
. . . . . . . . . 10
⊢ ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∖ {𝐾}) |
102 | 101 | eqcomi 2748 |
. . . . . . . . 9
⊢ (𝑁 ∖ {𝐾}) = ((𝑁 ∖ {𝐾}) ∩ 𝑁) |
103 | 82, 83, 12, 25, 102 | gsmsymgreq 19021 |
. . . . . . . 8
⊢ ((((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) |
104 | 93, 98, 103 | sylc 65 |
. . . . . . 7
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)) |
105 | 65 | anim2i 616 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾)) |
106 | 105, 67 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾})) |
107 | 106 | ex 412 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑁 → (¬ 𝑘 = 𝐾 → 𝑘 ∈ (𝑁 ∖ {𝐾}))) |
108 | 107 | adantl 481 |
. . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (¬ 𝑘 = 𝐾 → 𝑘 ∈ (𝑁 ∖ {𝐾}))) |
109 | 108 | impcom 407 |
. . . . . . 7
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ (𝑁 ∖ {𝐾})) |
110 | 76, 104, 109 | rspcdva 3562 |
. . . . . 6
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) |
111 | 63, 73, 110 | 3eqtr3d 2787 |
. . . . 5
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) |
112 | 111 | ex 412 |
. . . 4
⊢ (¬
𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) |
113 | 59, 112 | pm2.61i 182 |
. . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) |
114 | 7, 21, 113 | eqfnfvd 6906 |
. 2
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑈)) |
115 | 114 | exp31 419 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) |