MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemB Structured version   Visualization version   GIF version

Theorem psgndiflemB 20738
Description: Lemma 1 for psgndif 20740. (Contributed by AV, 27-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnfix.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
psgnfix.s 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
psgnfix.z 𝑍 = (SymGrp‘𝑁)
psgnfix.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgndiflemB (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈))))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞   𝑖,𝐾,𝑛   𝑖,𝑁,𝑛   𝑆,𝑖,𝑛   𝑈,𝑖,𝑛   𝑖,𝑊,𝑛   𝑖,𝑍,𝑛
Allowed substitution hints:   𝑃(𝑖,𝑛)   𝑄(𝑖,𝑛)   𝑅(𝑖,𝑛,𝑞)   𝑆(𝑞)   𝑇(𝑖,𝑛,𝑞)   𝑈(𝑞)   𝑁(𝑞)   𝑊(𝑞)   𝑍(𝑞)

Proof of Theorem psgndiflemB
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elrabi 3674 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
2 eqid 2821 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3 psgnfix.p . . . . . 6 𝑃 = (Base‘(SymGrp‘𝑁))
42, 3symgbasf 18498 . . . . 5 (𝑄𝑃𝑄:𝑁𝑁)
5 ffn 6508 . . . . 5 (𝑄:𝑁𝑁𝑄 Fn 𝑁)
61, 4, 53syl 18 . . . 4 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄 Fn 𝑁)
76ad3antlr 729 . . 3 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑄 Fn 𝑁)
8 simpl 485 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
98adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → 𝑁 ∈ Fin)
109adantr 483 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑁 ∈ Fin)
11 simp1 1132 . . . . 5 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑈 ∈ Word 𝑅)
12 psgnfix.z . . . . . 6 𝑍 = (SymGrp‘𝑁)
1312eqcomi 2830 . . . . . . . 8 (SymGrp‘𝑁) = 𝑍
1413fveq2i 6667 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘𝑍)
153, 14eqtri 2844 . . . . . 6 𝑃 = (Base‘𝑍)
16 psgnfix.r . . . . . 6 𝑅 = ran (pmTrsp‘𝑁)
1712, 15, 16gsmtrcl 18638 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑈 ∈ Word 𝑅) → (𝑍 Σg 𝑈) ∈ 𝑃)
1810, 11, 17syl2an 597 . . . 4 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) ∈ 𝑃)
192, 3symgbasf 18498 . . . 4 ((𝑍 Σg 𝑈) ∈ 𝑃 → (𝑍 Σg 𝑈):𝑁𝑁)
20 ffn 6508 . . . 4 ((𝑍 Σg 𝑈):𝑁𝑁 → (𝑍 Σg 𝑈) Fn 𝑁)
2118, 19, 203syl 18 . . 3 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) Fn 𝑁)
228ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑁 ∈ Fin)
23 simpr 487 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝐾𝑁)
2423ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝐾𝑁)
25 eqid 2821 . . . . . . . . . . . . . . . 16 (Base‘𝑍) = (Base‘𝑍)
2616, 12, 25symgtrf 18591 . . . . . . . . . . . . . . 15 𝑅 ⊆ (Base‘𝑍)
27 sswrd 13863 . . . . . . . . . . . . . . . 16 (𝑅 ⊆ (Base‘𝑍) → Word 𝑅 ⊆ Word (Base‘𝑍))
2827sseld 3965 . . . . . . . . . . . . . . 15 (𝑅 ⊆ (Base‘𝑍) → (𝑈 ∈ Word 𝑅𝑈 ∈ Word (Base‘𝑍)))
2926, 28ax-mp 5 . . . . . . . . . . . . . 14 (𝑈 ∈ Word 𝑅𝑈 ∈ Word (Base‘𝑍))
30293ad2ant1 1129 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑈 ∈ Word (Base‘𝑍))
3130adantl 484 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑈 ∈ Word (Base‘𝑍))
3222, 24, 313jca 1124 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑁 ∈ Fin ∧ 𝐾𝑁𝑈 ∈ Word (Base‘𝑍)))
33 simpl 485 . . . . . . . . . . . . . . 15 ((((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ((𝑈𝑖)‘𝐾) = 𝐾)
3433ralimi 3160 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
35343ad2ant3 1131 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
3635adantl 484 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
37 oveq2 7158 . . . . . . . . . . . . . . . 16 ((♯‘𝑈) = (♯‘𝑊) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊)))
3837eqcoms 2829 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = (♯‘𝑈) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊)))
3938raleqdv 3415 . . . . . . . . . . . . . 14 ((♯‘𝑊) = (♯‘𝑈) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
40393ad2ant2 1130 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
4140adantl 484 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
4236, 41mpbird 259 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾)
4312, 25gsmsymgrfix 18550 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑈 ∈ Word (Base‘𝑍)) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾))
4432, 42, 43sylc 65 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾)
4544eqcomd 2827 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾))
4645adantr 483 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾))
47 fveq2 6664 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑄𝑘) = (𝑄𝐾))
48 fveq1 6663 . . . . . . . . . . . . 13 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
4948eqeq1d 2823 . . . . . . . . . . . 12 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐾 ↔ (𝑄𝐾) = 𝐾))
5049elrab 3679 . . . . . . . . . . 11 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐾))
5150simprbi 499 . . . . . . . . . 10 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑄𝐾) = 𝐾)
5251ad3antlr 729 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑄𝐾) = 𝐾)
5347, 52sylan9eqr 2878 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄𝑘) = 𝐾)
54 fveq2 6664 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾))
5554adantl 484 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾))
5646, 53, 553eqtr4d 2866 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
5756ex 415 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑘 = 𝐾 → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
5857adantr 483 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑘 = 𝐾 → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
5958com12 32 . . . 4 (𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
60 fveq1 6663 . . . . . . . . 9 ((𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6160adantl 484 . . . . . . . 8 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6261ad3antlr 729 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6362adantl 484 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
64 simpr 487 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
65 neqne 3024 . . . . . . . . . . . . 13 𝑘 = 𝐾𝑘𝐾)
6664, 65anim12i 614 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → (𝑘𝑁𝑘𝐾))
67 eldifsn 4712 . . . . . . . . . . . 12 (𝑘 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑘𝑁𝑘𝐾))
6866, 67sylibr 236 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
6968fvresd 6684 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))
7069exp31 422 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑘𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))))
7170ad3antrrr 728 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑘𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))))
7271imp 409 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘)))
7372impcom 410 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))
74 fveq2 6664 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑆 Σg 𝑊)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑘))
75 fveq2 6664 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑍 Σg 𝑈)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑘))
7674, 75eqeq12d 2837 . . . . . . 7 (𝑛 = 𝑘 → (((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
77 diffi 8744 . . . . . . . . . . . . 13 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
7877ancri 552 . . . . . . . . . . . 12 (𝑁 ∈ Fin → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
7978adantr 483 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
8079ad3antrrr 728 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
81 psgnfix.t . . . . . . . . . . . . . . 15 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
82 psgnfix.s . . . . . . . . . . . . . . 15 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
83 eqid 2821 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
8481, 82, 83symgtrf 18591 . . . . . . . . . . . . . 14 𝑇 ⊆ (Base‘𝑆)
85 sswrd 13863 . . . . . . . . . . . . . . 15 (𝑇 ⊆ (Base‘𝑆) → Word 𝑇 ⊆ Word (Base‘𝑆))
8685sseld 3965 . . . . . . . . . . . . . 14 (𝑇 ⊆ (Base‘𝑆) → (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝑆)))
8784, 86ax-mp 5 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝑆))
8887ad2antrl 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑊 ∈ Word (Base‘𝑆))
8988adantr 483 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑊 ∈ Word (Base‘𝑆))
90 simpr2 1191 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (♯‘𝑊) = (♯‘𝑈))
9189, 31, 903jca 1124 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈)))
9280, 91jca 514 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))))
9392ad2antrl 726 . . . . . . . 8 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))))
94 simpr 487 . . . . . . . . . . . 12 ((((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9594ralimi 3160 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
96953ad2ant3 1131 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9796adantl 484 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9897ad2antrl 726 . . . . . . . 8 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
99 incom 4177 . . . . . . . . . . 11 ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∩ (𝑁 ∖ {𝐾}))
100 indif 4245 . . . . . . . . . . 11 (𝑁 ∩ (𝑁 ∖ {𝐾})) = (𝑁 ∖ {𝐾})
10199, 100eqtri 2844 . . . . . . . . . 10 ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∖ {𝐾})
102101eqcomi 2830 . . . . . . . . 9 (𝑁 ∖ {𝐾}) = ((𝑁 ∖ {𝐾}) ∩ 𝑁)
10382, 83, 12, 25, 102gsmsymgreq 18554 . . . . . . . 8 ((((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
10493, 98, 103sylc 65 . . . . . . 7 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
10565anim2i 618 . . . . . . . . . . 11 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐾) → (𝑘𝑁𝑘𝐾))
106105, 67sylibr 236 . . . . . . . . . 10 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
107106ex 415 . . . . . . . . 9 (𝑘𝑁 → (¬ 𝑘 = 𝐾𝑘 ∈ (𝑁 ∖ {𝐾})))
108107adantl 484 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (¬ 𝑘 = 𝐾𝑘 ∈ (𝑁 ∖ {𝐾})))
109108impcom 410 . . . . . . 7 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
11076, 104, 109rspcdva 3624 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
11163, 73, 1103eqtr3d 2864 . . . . 5 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
112111ex 415 . . . 4 𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
11359, 112pm2.61i 184 . . 3 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
1147, 21, 113eqfnfvd 6799 . 2 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑈))
115114exp31 422 1 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  {crab 3142  cdif 3932  cin 3934  wss 3935  {csn 4560  ran crn 5550  cres 5551   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  Fincfn 8503  0cc0 10531  ..^cfzo 13027  chash 13684  Word cword 13855  Basecbs 16477   Σg cgsu 16708  SymGrpcsymg 18489  pmTrspcpmtr 18563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-word 13856  df-lsw 13909  df-concat 13917  df-s1 13944  df-substr 13997  df-pfx 14027  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-tset 16578  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-efmnd 18028  df-grp 18100  df-minusg 18101  df-subg 18270  df-symg 18490  df-pmtr 18564  df-psgn 18613
This theorem is referenced by:  psgndiflemA  20739
  Copyright terms: Public domain W3C validator