| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elrabi 3686 | . . . . 5
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 ∈ 𝑃) | 
| 2 |  | eqid 2736 | . . . . . 6
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) | 
| 3 |  | psgnfix.p | . . . . . 6
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) | 
| 4 | 2, 3 | symgbasf 19394 | . . . . 5
⊢ (𝑄 ∈ 𝑃 → 𝑄:𝑁⟶𝑁) | 
| 5 |  | ffn 6735 | . . . . 5
⊢ (𝑄:𝑁⟶𝑁 → 𝑄 Fn 𝑁) | 
| 6 | 1, 4, 5 | 3syl 18 | . . . 4
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → 𝑄 Fn 𝑁) | 
| 7 | 6 | ad3antlr 731 | . . 3
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑄 Fn 𝑁) | 
| 8 |  | simpl 482 | . . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) | 
| 9 | 8 | adantr 480 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → 𝑁 ∈ Fin) | 
| 10 | 9 | adantr 480 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑁 ∈ Fin) | 
| 11 |  | simp1 1136 | . . . . 5
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑈 ∈ Word 𝑅) | 
| 12 |  | psgnfix.z | . . . . . 6
⊢ 𝑍 = (SymGrp‘𝑁) | 
| 13 | 12 | eqcomi 2745 | . . . . . . . 8
⊢
(SymGrp‘𝑁) =
𝑍 | 
| 14 | 13 | fveq2i 6908 | . . . . . . 7
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘𝑍) | 
| 15 | 3, 14 | eqtri 2764 | . . . . . 6
⊢ 𝑃 = (Base‘𝑍) | 
| 16 |  | psgnfix.r | . . . . . 6
⊢ 𝑅 = ran (pmTrsp‘𝑁) | 
| 17 | 12, 15, 16 | gsmtrcl 19535 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑈 ∈ Word 𝑅) → (𝑍 Σg 𝑈) ∈ 𝑃) | 
| 18 | 10, 11, 17 | syl2an 596 | . . . 4
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) ∈ 𝑃) | 
| 19 | 2, 3 | symgbasf 19394 | . . . 4
⊢ ((𝑍 Σg
𝑈) ∈ 𝑃 → (𝑍 Σg 𝑈):𝑁⟶𝑁) | 
| 20 |  | ffn 6735 | . . . 4
⊢ ((𝑍 Σg
𝑈):𝑁⟶𝑁 → (𝑍 Σg 𝑈) Fn 𝑁) | 
| 21 | 18, 19, 20 | 3syl 18 | . . 3
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) Fn 𝑁) | 
| 22 | 8 | ad3antrrr 730 | . . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑁 ∈ Fin) | 
| 23 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) | 
| 24 | 23 | ad3antrrr 730 | . . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝐾 ∈ 𝑁) | 
| 25 |  | eqid 2736 | . . . . . . . . . . . . . . . 16
⊢
(Base‘𝑍) =
(Base‘𝑍) | 
| 26 | 16, 12, 25 | symgtrf 19488 | . . . . . . . . . . . . . . 15
⊢ 𝑅 ⊆ (Base‘𝑍) | 
| 27 |  | sswrd 14561 | . . . . . . . . . . . . . . . 16
⊢ (𝑅 ⊆ (Base‘𝑍) → Word 𝑅 ⊆ Word (Base‘𝑍)) | 
| 28 | 27 | sseld 3981 | . . . . . . . . . . . . . . 15
⊢ (𝑅 ⊆ (Base‘𝑍) → (𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word (Base‘𝑍))) | 
| 29 | 26, 28 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ (𝑈 ∈ Word 𝑅 → 𝑈 ∈ Word (Base‘𝑍)) | 
| 30 | 29 | 3ad2ant1 1133 | . . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑈 ∈ Word (Base‘𝑍)) | 
| 31 | 30 | adantl 481 | . . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑈 ∈ Word (Base‘𝑍)) | 
| 32 | 22, 24, 31 | 3jca 1128 | . . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word (Base‘𝑍))) | 
| 33 |  | simpl 482 | . . . . . . . . . . . . . . 15
⊢ ((((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ((𝑈‘𝑖)‘𝐾) = 𝐾) | 
| 34 | 33 | ralimi 3082 | . . . . . . . . . . . . . 14
⊢
(∀𝑖 ∈
(0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) | 
| 35 | 34 | 3ad2ant3 1135 | . . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) | 
| 36 | 35 | adantl 481 | . . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾) | 
| 37 |  | oveq2 7440 | . . . . . . . . . . . . . . . 16
⊢
((♯‘𝑈) =
(♯‘𝑊) →
(0..^(♯‘𝑈)) =
(0..^(♯‘𝑊))) | 
| 38 | 37 | eqcoms 2744 | . . . . . . . . . . . . . . 15
⊢
((♯‘𝑊) =
(♯‘𝑈) →
(0..^(♯‘𝑈)) =
(0..^(♯‘𝑊))) | 
| 39 | 38 | raleqdv 3325 | . . . . . . . . . . . . . 14
⊢
((♯‘𝑊) =
(♯‘𝑈) →
(∀𝑖 ∈
(0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾)) | 
| 40 | 39 | 3ad2ant2 1134 | . . . . . . . . . . . . 13
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾)) | 
| 41 | 40 | adantl 481 | . . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈‘𝑖)‘𝐾) = 𝐾)) | 
| 42 | 36, 41 | mpbird 257 | . . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾) | 
| 43 | 12, 25 | gsmsymgrfix 19447 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑈 ∈ Word (Base‘𝑍)) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈‘𝑖)‘𝐾) = 𝐾 → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾)) | 
| 44 | 32, 42, 43 | sylc 65 | . . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾) | 
| 45 | 44 | eqcomd 2742 | . . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾)) | 
| 46 | 45 | adantr 480 | . . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾)) | 
| 47 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑄‘𝑘) = (𝑄‘𝐾)) | 
| 48 |  | fveq1 6904 | . . . . . . . . . . . . 13
⊢ (𝑞 = 𝑄 → (𝑞‘𝐾) = (𝑄‘𝐾)) | 
| 49 | 48 | eqeq1d 2738 | . . . . . . . . . . . 12
⊢ (𝑞 = 𝑄 → ((𝑞‘𝐾) = 𝐾 ↔ (𝑄‘𝐾) = 𝐾)) | 
| 50 | 49 | elrab 3691 | . . . . . . . . . . 11
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↔ (𝑄 ∈ 𝑃 ∧ (𝑄‘𝐾) = 𝐾)) | 
| 51 | 50 | simprbi 496 | . . . . . . . . . 10
⊢ (𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → (𝑄‘𝐾) = 𝐾) | 
| 52 | 51 | ad3antlr 731 | . . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑄‘𝐾) = 𝐾) | 
| 53 | 47, 52 | sylan9eqr 2798 | . . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄‘𝑘) = 𝐾) | 
| 54 |  | fveq2 6905 | . . . . . . . . 9
⊢ (𝑘 = 𝐾 → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾)) | 
| 55 | 54 | adantl 481 | . . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾)) | 
| 56 | 46, 53, 55 | 3eqtr4d 2786 | . . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) | 
| 57 | 56 | ex 412 | . . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑘 = 𝐾 → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) | 
| 58 | 57 | adantr 480 | . . . . 5
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑘 = 𝐾 → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) | 
| 59 | 58 | com12 32 | . . . 4
⊢ (𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) | 
| 60 |  | fveq1 6904 | . . . . . . . . 9
⊢ ((𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) | 
| 61 | 60 | adantl 481 | . . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) | 
| 62 | 61 | ad3antlr 731 | . . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) | 
| 63 | 62 | adantl 481 | . . . . . 6
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘)) | 
| 64 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) | 
| 65 |  | neqne 2947 | . . . . . . . . . . . . 13
⊢ (¬
𝑘 = 𝐾 → 𝑘 ≠ 𝐾) | 
| 66 | 64, 65 | anim12i 613 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐾) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾)) | 
| 67 |  | eldifsn 4785 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾)) | 
| 68 | 66, 67 | sylibr 234 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾})) | 
| 69 | 68 | fvresd 6925 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ ¬ 𝑘 = 𝐾) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)) | 
| 70 | 69 | exp31 419 | . . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑘 ∈ 𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)))) | 
| 71 | 70 | ad3antrrr 730 | . . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑘 ∈ 𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)))) | 
| 72 | 71 | imp 406 | . . . . . . 7
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘))) | 
| 73 | 72 | impcom 407 | . . . . . 6
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄‘𝑘)) | 
| 74 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝑆 Σg 𝑊)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑘)) | 
| 75 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝑍 Σg 𝑈)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑘)) | 
| 76 | 74, 75 | eqeq12d 2752 | . . . . . . 7
⊢ (𝑛 = 𝑘 → (((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) | 
| 77 |  | diffi 9216 | . . . . . . . . . . . . 13
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) | 
| 78 | 77 | ancri 549 | . . . . . . . . . . . 12
⊢ (𝑁 ∈ Fin → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 79 | 78 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 80 | 79 | ad3antrrr 730 | . . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin)) | 
| 81 |  | psgnfix.t | . . . . . . . . . . . . . . 15
⊢ 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾})) | 
| 82 |  | psgnfix.s | . . . . . . . . . . . . . . 15
⊢ 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾})) | 
| 83 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 84 | 81, 82, 83 | symgtrf 19488 | . . . . . . . . . . . . . 14
⊢ 𝑇 ⊆ (Base‘𝑆) | 
| 85 |  | sswrd 14561 | . . . . . . . . . . . . . . 15
⊢ (𝑇 ⊆ (Base‘𝑆) → Word 𝑇 ⊆ Word (Base‘𝑆)) | 
| 86 | 85 | sseld 3981 | . . . . . . . . . . . . . 14
⊢ (𝑇 ⊆ (Base‘𝑆) → (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word (Base‘𝑆))) | 
| 87 | 84, 86 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑇 → 𝑊 ∈ Word (Base‘𝑆)) | 
| 88 | 87 | ad2antrl 728 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑊 ∈ Word (Base‘𝑆)) | 
| 89 | 88 | adantr 480 | . . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑊 ∈ Word (Base‘𝑆)) | 
| 90 |  | simpr2 1195 | . . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (♯‘𝑊) = (♯‘𝑈)) | 
| 91 | 89, 31, 90 | 3jca 1128 | . . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))) | 
| 92 | 80, 91 | jca 511 | . . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈)))) | 
| 93 | 92 | ad2antrl 728 | . . . . . . . 8
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈)))) | 
| 94 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| 95 | 94 | ralimi 3082 | . . . . . . . . . . 11
⊢
(∀𝑖 ∈
(0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| 96 | 95 | 3ad2ant3 1135 | . . . . . . . . . 10
⊢ ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| 97 | 96 | adantl 481 | . . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| 98 | 97 | ad2antrl 728 | . . . . . . . 8
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)) | 
| 99 |  | incom 4208 | . . . . . . . . . . 11
⊢ ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∩ (𝑁 ∖ {𝐾})) | 
| 100 |  | indif 4279 | . . . . . . . . . . 11
⊢ (𝑁 ∩ (𝑁 ∖ {𝐾})) = (𝑁 ∖ {𝐾}) | 
| 101 | 99, 100 | eqtri 2764 | . . . . . . . . . 10
⊢ ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∖ {𝐾}) | 
| 102 | 101 | eqcomi 2745 | . . . . . . . . 9
⊢ (𝑁 ∖ {𝐾}) = ((𝑁 ∖ {𝐾}) ∩ 𝑁) | 
| 103 | 82, 83, 12, 25, 102 | gsmsymgreq 19451 | . . . . . . . 8
⊢ ((((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))) | 
| 104 | 93, 98, 103 | sylc 65 | . . . . . . 7
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)) | 
| 105 | 65 | anim2i 617 | . . . . . . . . . . 11
⊢ ((𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾) → (𝑘 ∈ 𝑁 ∧ 𝑘 ≠ 𝐾)) | 
| 106 | 105, 67 | sylibr 234 | . . . . . . . . . 10
⊢ ((𝑘 ∈ 𝑁 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾})) | 
| 107 | 106 | ex 412 | . . . . . . . . 9
⊢ (𝑘 ∈ 𝑁 → (¬ 𝑘 = 𝐾 → 𝑘 ∈ (𝑁 ∖ {𝐾}))) | 
| 108 | 107 | adantl 481 | . . . . . . . 8
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (¬ 𝑘 = 𝐾 → 𝑘 ∈ (𝑁 ∖ {𝐾}))) | 
| 109 | 108 | impcom 407 | . . . . . . 7
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ (𝑁 ∖ {𝐾})) | 
| 110 | 76, 104, 109 | rspcdva 3622 | . . . . . 6
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) | 
| 111 | 63, 73, 110 | 3eqtr3d 2784 | . . . . 5
⊢ ((¬
𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁)) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) | 
| 112 | 111 | ex 412 | . . . 4
⊢ (¬
𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))) | 
| 113 | 59, 112 | pm2.61i 182 | . . 3
⊢
((((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) ∧ 𝑘 ∈ 𝑁) → (𝑄‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)) | 
| 114 | 7, 21, 113 | eqfnfvd 7053 | . 2
⊢
(((((𝑁 ∈ Fin
∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑈)) | 
| 115 | 114 | exp31 419 | 1
⊢ (((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) ∧ 𝑄 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈‘𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊‘𝑖)‘𝑛) = ((𝑈‘𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈)))) |