MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemB Structured version   Visualization version   GIF version

Theorem psgndiflemB 20850
Description: Lemma 1 for psgndif 20852. (Contributed by AV, 27-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnfix.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
psgnfix.s 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
psgnfix.z 𝑍 = (SymGrp‘𝑁)
psgnfix.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgndiflemB (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈))))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞   𝑖,𝐾,𝑛   𝑖,𝑁,𝑛   𝑆,𝑖,𝑛   𝑈,𝑖,𝑛   𝑖,𝑊,𝑛   𝑖,𝑍,𝑛
Allowed substitution hints:   𝑃(𝑖,𝑛)   𝑄(𝑖,𝑛)   𝑅(𝑖,𝑛,𝑞)   𝑆(𝑞)   𝑇(𝑖,𝑛,𝑞)   𝑈(𝑞)   𝑁(𝑞)   𝑊(𝑞)   𝑍(𝑞)

Proof of Theorem psgndiflemB
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elrabi 3623 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
2 eqid 2736 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3 psgnfix.p . . . . . 6 𝑃 = (Base‘(SymGrp‘𝑁))
42, 3symgbasf 19028 . . . . 5 (𝑄𝑃𝑄:𝑁𝑁)
5 ffn 6630 . . . . 5 (𝑄:𝑁𝑁𝑄 Fn 𝑁)
61, 4, 53syl 18 . . . 4 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄 Fn 𝑁)
76ad3antlr 729 . . 3 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑄 Fn 𝑁)
8 simpl 484 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
98adantr 482 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → 𝑁 ∈ Fin)
109adantr 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑁 ∈ Fin)
11 simp1 1136 . . . . 5 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑈 ∈ Word 𝑅)
12 psgnfix.z . . . . . 6 𝑍 = (SymGrp‘𝑁)
1312eqcomi 2745 . . . . . . . 8 (SymGrp‘𝑁) = 𝑍
1413fveq2i 6807 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘𝑍)
153, 14eqtri 2764 . . . . . 6 𝑃 = (Base‘𝑍)
16 psgnfix.r . . . . . 6 𝑅 = ran (pmTrsp‘𝑁)
1712, 15, 16gsmtrcl 19169 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑈 ∈ Word 𝑅) → (𝑍 Σg 𝑈) ∈ 𝑃)
1810, 11, 17syl2an 597 . . . 4 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) ∈ 𝑃)
192, 3symgbasf 19028 . . . 4 ((𝑍 Σg 𝑈) ∈ 𝑃 → (𝑍 Σg 𝑈):𝑁𝑁)
20 ffn 6630 . . . 4 ((𝑍 Σg 𝑈):𝑁𝑁 → (𝑍 Σg 𝑈) Fn 𝑁)
2118, 19, 203syl 18 . . 3 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) Fn 𝑁)
228ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑁 ∈ Fin)
23 simpr 486 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝐾𝑁)
2423ad3antrrr 728 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝐾𝑁)
25 eqid 2736 . . . . . . . . . . . . . . . 16 (Base‘𝑍) = (Base‘𝑍)
2616, 12, 25symgtrf 19122 . . . . . . . . . . . . . . 15 𝑅 ⊆ (Base‘𝑍)
27 sswrd 14270 . . . . . . . . . . . . . . . 16 (𝑅 ⊆ (Base‘𝑍) → Word 𝑅 ⊆ Word (Base‘𝑍))
2827sseld 3925 . . . . . . . . . . . . . . 15 (𝑅 ⊆ (Base‘𝑍) → (𝑈 ∈ Word 𝑅𝑈 ∈ Word (Base‘𝑍)))
2926, 28ax-mp 5 . . . . . . . . . . . . . 14 (𝑈 ∈ Word 𝑅𝑈 ∈ Word (Base‘𝑍))
30293ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑈 ∈ Word (Base‘𝑍))
3130adantl 483 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑈 ∈ Word (Base‘𝑍))
3222, 24, 313jca 1128 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑁 ∈ Fin ∧ 𝐾𝑁𝑈 ∈ Word (Base‘𝑍)))
33 simpl 484 . . . . . . . . . . . . . . 15 ((((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ((𝑈𝑖)‘𝐾) = 𝐾)
3433ralimi 3083 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
35343ad2ant3 1135 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
3635adantl 483 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
37 oveq2 7315 . . . . . . . . . . . . . . . 16 ((♯‘𝑈) = (♯‘𝑊) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊)))
3837eqcoms 2744 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = (♯‘𝑈) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊)))
3938raleqdv 3360 . . . . . . . . . . . . . 14 ((♯‘𝑊) = (♯‘𝑈) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
40393ad2ant2 1134 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
4140adantl 483 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
4236, 41mpbird 257 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾)
4312, 25gsmsymgrfix 19081 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑈 ∈ Word (Base‘𝑍)) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾))
4432, 42, 43sylc 65 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾)
4544eqcomd 2742 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾))
4645adantr 482 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾))
47 fveq2 6804 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑄𝑘) = (𝑄𝐾))
48 fveq1 6803 . . . . . . . . . . . . 13 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
4948eqeq1d 2738 . . . . . . . . . . . 12 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐾 ↔ (𝑄𝐾) = 𝐾))
5049elrab 3629 . . . . . . . . . . 11 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐾))
5150simprbi 498 . . . . . . . . . 10 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑄𝐾) = 𝐾)
5251ad3antlr 729 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑄𝐾) = 𝐾)
5347, 52sylan9eqr 2798 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄𝑘) = 𝐾)
54 fveq2 6804 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾))
5554adantl 483 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾))
5646, 53, 553eqtr4d 2786 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
5756ex 414 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑘 = 𝐾 → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
5857adantr 482 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑘 = 𝐾 → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
5958com12 32 . . . 4 (𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
60 fveq1 6803 . . . . . . . . 9 ((𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6160adantl 483 . . . . . . . 8 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6261ad3antlr 729 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6362adantl 483 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
64 simpr 486 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
65 neqne 2949 . . . . . . . . . . . . 13 𝑘 = 𝐾𝑘𝐾)
6664, 65anim12i 614 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → (𝑘𝑁𝑘𝐾))
67 eldifsn 4726 . . . . . . . . . . . 12 (𝑘 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑘𝑁𝑘𝐾))
6866, 67sylibr 233 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
6968fvresd 6824 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))
7069exp31 421 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑘𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))))
7170ad3antrrr 728 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑘𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))))
7271imp 408 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘)))
7372impcom 409 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))
74 fveq2 6804 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑆 Σg 𝑊)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑘))
75 fveq2 6804 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑍 Σg 𝑈)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑘))
7674, 75eqeq12d 2752 . . . . . . 7 (𝑛 = 𝑘 → (((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
77 diffi 9000 . . . . . . . . . . . . 13 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
7877ancri 551 . . . . . . . . . . . 12 (𝑁 ∈ Fin → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
7978adantr 482 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
8079ad3antrrr 728 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
81 psgnfix.t . . . . . . . . . . . . . . 15 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
82 psgnfix.s . . . . . . . . . . . . . . 15 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
83 eqid 2736 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
8481, 82, 83symgtrf 19122 . . . . . . . . . . . . . 14 𝑇 ⊆ (Base‘𝑆)
85 sswrd 14270 . . . . . . . . . . . . . . 15 (𝑇 ⊆ (Base‘𝑆) → Word 𝑇 ⊆ Word (Base‘𝑆))
8685sseld 3925 . . . . . . . . . . . . . 14 (𝑇 ⊆ (Base‘𝑆) → (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝑆)))
8784, 86ax-mp 5 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝑆))
8887ad2antrl 726 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑊 ∈ Word (Base‘𝑆))
8988adantr 482 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑊 ∈ Word (Base‘𝑆))
90 simpr2 1195 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (♯‘𝑊) = (♯‘𝑈))
9189, 31, 903jca 1128 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈)))
9280, 91jca 513 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))))
9392ad2antrl 726 . . . . . . . 8 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))))
94 simpr 486 . . . . . . . . . . . 12 ((((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9594ralimi 3083 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
96953ad2ant3 1135 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9796adantl 483 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9897ad2antrl 726 . . . . . . . 8 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
99 incom 4141 . . . . . . . . . . 11 ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∩ (𝑁 ∖ {𝐾}))
100 indif 4209 . . . . . . . . . . 11 (𝑁 ∩ (𝑁 ∖ {𝐾})) = (𝑁 ∖ {𝐾})
10199, 100eqtri 2764 . . . . . . . . . 10 ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∖ {𝐾})
102101eqcomi 2745 . . . . . . . . 9 (𝑁 ∖ {𝐾}) = ((𝑁 ∖ {𝐾}) ∩ 𝑁)
10382, 83, 12, 25, 102gsmsymgreq 19085 . . . . . . . 8 ((((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
10493, 98, 103sylc 65 . . . . . . 7 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
10565anim2i 618 . . . . . . . . . . 11 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐾) → (𝑘𝑁𝑘𝐾))
106105, 67sylibr 233 . . . . . . . . . 10 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
107106ex 414 . . . . . . . . 9 (𝑘𝑁 → (¬ 𝑘 = 𝐾𝑘 ∈ (𝑁 ∖ {𝐾})))
108107adantl 483 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (¬ 𝑘 = 𝐾𝑘 ∈ (𝑁 ∖ {𝐾})))
109108impcom 409 . . . . . . 7 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
11076, 104, 109rspcdva 3567 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
11163, 73, 1103eqtr3d 2784 . . . . 5 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
112111ex 414 . . . 4 𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
11359, 112pm2.61i 182 . . 3 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
1147, 21, 113eqfnfvd 6944 . 2 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑈))
115114exp31 421 1 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wral 3062  {crab 3284  cdif 3889  cin 3891  wss 3892  {csn 4565  ran crn 5601  cres 5602   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  Fincfn 8764  0cc0 10917  ..^cfzo 13428  chash 14090  Word cword 14262  Basecbs 16957   Σg cgsu 17196  SymGrpcsymg 19019  pmTrspcpmtr 19094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-xnn0 12352  df-z 12366  df-uz 12629  df-fz 13286  df-fzo 13429  df-seq 13768  df-hash 14091  df-word 14263  df-lsw 14311  df-concat 14319  df-s1 14346  df-substr 14399  df-pfx 14429  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-tset 17026  df-0g 17197  df-gsum 17198  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-efmnd 18553  df-grp 18625  df-minusg 18626  df-subg 18797  df-symg 19020  df-pmtr 19095  df-psgn 19144
This theorem is referenced by:  psgndiflemA  20851
  Copyright terms: Public domain W3C validator