MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgndiflemB Structured version   Visualization version   GIF version

Theorem psgndiflemB 21372
Description: Lemma 1 for psgndif 21374. (Contributed by AV, 27-Jan-2019.)
Hypotheses
Ref Expression
psgnfix.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnfix.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
psgnfix.s 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
psgnfix.z 𝑍 = (SymGrp‘𝑁)
psgnfix.r 𝑅 = ran (pmTrsp‘𝑁)
Assertion
Ref Expression
psgndiflemB (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈))))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞   𝑖,𝐾,𝑛   𝑖,𝑁,𝑛   𝑆,𝑖,𝑛   𝑈,𝑖,𝑛   𝑖,𝑊,𝑛   𝑖,𝑍,𝑛
Allowed substitution hints:   𝑃(𝑖,𝑛)   𝑄(𝑖,𝑛)   𝑅(𝑖,𝑛,𝑞)   𝑆(𝑞)   𝑇(𝑖,𝑛,𝑞)   𝑈(𝑞)   𝑁(𝑞)   𝑊(𝑞)   𝑍(𝑞)

Proof of Theorem psgndiflemB
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elrabi 3676 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
2 eqid 2730 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3 psgnfix.p . . . . . 6 𝑃 = (Base‘(SymGrp‘𝑁))
42, 3symgbasf 19284 . . . . 5 (𝑄𝑃𝑄:𝑁𝑁)
5 ffn 6716 . . . . 5 (𝑄:𝑁𝑁𝑄 Fn 𝑁)
61, 4, 53syl 18 . . . 4 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄 Fn 𝑁)
76ad3antlr 727 . . 3 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑄 Fn 𝑁)
8 simpl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
98adantr 479 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → 𝑁 ∈ Fin)
109adantr 479 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑁 ∈ Fin)
11 simp1 1134 . . . . 5 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑈 ∈ Word 𝑅)
12 psgnfix.z . . . . . 6 𝑍 = (SymGrp‘𝑁)
1312eqcomi 2739 . . . . . . . 8 (SymGrp‘𝑁) = 𝑍
1413fveq2i 6893 . . . . . . 7 (Base‘(SymGrp‘𝑁)) = (Base‘𝑍)
153, 14eqtri 2758 . . . . . 6 𝑃 = (Base‘𝑍)
16 psgnfix.r . . . . . 6 𝑅 = ran (pmTrsp‘𝑁)
1712, 15, 16gsmtrcl 19425 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑈 ∈ Word 𝑅) → (𝑍 Σg 𝑈) ∈ 𝑃)
1810, 11, 17syl2an 594 . . . 4 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) ∈ 𝑃)
192, 3symgbasf 19284 . . . 4 ((𝑍 Σg 𝑈) ∈ 𝑃 → (𝑍 Σg 𝑈):𝑁𝑁)
20 ffn 6716 . . . 4 ((𝑍 Σg 𝑈):𝑁𝑁 → (𝑍 Σg 𝑈) Fn 𝑁)
2118, 19, 203syl 18 . . 3 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑍 Σg 𝑈) Fn 𝑁)
228ad3antrrr 726 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑁 ∈ Fin)
23 simpr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → 𝐾𝑁)
2423ad3antrrr 726 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝐾𝑁)
25 eqid 2730 . . . . . . . . . . . . . . . 16 (Base‘𝑍) = (Base‘𝑍)
2616, 12, 25symgtrf 19378 . . . . . . . . . . . . . . 15 𝑅 ⊆ (Base‘𝑍)
27 sswrd 14476 . . . . . . . . . . . . . . . 16 (𝑅 ⊆ (Base‘𝑍) → Word 𝑅 ⊆ Word (Base‘𝑍))
2827sseld 3980 . . . . . . . . . . . . . . 15 (𝑅 ⊆ (Base‘𝑍) → (𝑈 ∈ Word 𝑅𝑈 ∈ Word (Base‘𝑍)))
2926, 28ax-mp 5 . . . . . . . . . . . . . 14 (𝑈 ∈ Word 𝑅𝑈 ∈ Word (Base‘𝑍))
30293ad2ant1 1131 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑈 ∈ Word (Base‘𝑍))
3130adantl 480 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑈 ∈ Word (Base‘𝑍))
3222, 24, 313jca 1126 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑁 ∈ Fin ∧ 𝐾𝑁𝑈 ∈ Word (Base‘𝑍)))
33 simpl 481 . . . . . . . . . . . . . . 15 ((((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ((𝑈𝑖)‘𝐾) = 𝐾)
3433ralimi 3081 . . . . . . . . . . . . . 14 (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
35343ad2ant3 1133 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
3635adantl 480 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾)
37 oveq2 7419 . . . . . . . . . . . . . . . 16 ((♯‘𝑈) = (♯‘𝑊) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊)))
3837eqcoms 2738 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = (♯‘𝑈) → (0..^(♯‘𝑈)) = (0..^(♯‘𝑊)))
3938raleqdv 3323 . . . . . . . . . . . . . 14 ((♯‘𝑊) = (♯‘𝑈) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
40393ad2ant2 1132 . . . . . . . . . . . . 13 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
4140adantl 480 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))((𝑈𝑖)‘𝐾) = 𝐾))
4236, 41mpbird 256 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾)
4312, 25gsmsymgrfix 19337 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝐾𝑁𝑈 ∈ Word (Base‘𝑍)) → (∀𝑖 ∈ (0..^(♯‘𝑈))((𝑈𝑖)‘𝐾) = 𝐾 → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾))
4432, 42, 43sylc 65 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ((𝑍 Σg 𝑈)‘𝐾) = 𝐾)
4544eqcomd 2736 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾))
4645adantr 479 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → 𝐾 = ((𝑍 Σg 𝑈)‘𝐾))
47 fveq2 6890 . . . . . . . . 9 (𝑘 = 𝐾 → (𝑄𝑘) = (𝑄𝐾))
48 fveq1 6889 . . . . . . . . . . . . 13 (𝑞 = 𝑄 → (𝑞𝐾) = (𝑄𝐾))
4948eqeq1d 2732 . . . . . . . . . . . 12 (𝑞 = 𝑄 → ((𝑞𝐾) = 𝐾 ↔ (𝑄𝐾) = 𝐾))
5049elrab 3682 . . . . . . . . . . 11 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↔ (𝑄𝑃 ∧ (𝑄𝐾) = 𝐾))
5150simprbi 495 . . . . . . . . . 10 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑄𝐾) = 𝐾)
5251ad3antlr 727 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑄𝐾) = 𝐾)
5347, 52sylan9eqr 2792 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄𝑘) = 𝐾)
54 fveq2 6890 . . . . . . . . 9 (𝑘 = 𝐾 → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾))
5554adantl 480 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → ((𝑍 Σg 𝑈)‘𝑘) = ((𝑍 Σg 𝑈)‘𝐾))
5646, 53, 553eqtr4d 2780 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘 = 𝐾) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
5756ex 411 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑘 = 𝐾 → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
5857adantr 479 . . . . 5 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑘 = 𝐾 → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
5958com12 32 . . . 4 (𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
60 fveq1 6889 . . . . . . . . 9 ((𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6160adantl 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6261ad3antlr 727 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
6362adantl 480 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = ((𝑆 Σg 𝑊)‘𝑘))
64 simpr 483 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
65 neqne 2946 . . . . . . . . . . . . 13 𝑘 = 𝐾𝑘𝐾)
6664, 65anim12i 611 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → (𝑘𝑁𝑘𝐾))
67 eldifsn 4789 . . . . . . . . . . . 12 (𝑘 ∈ (𝑁 ∖ {𝐾}) ↔ (𝑘𝑁𝑘𝐾))
6866, 67sylibr 233 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
6968fvresd 6910 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑘𝑁) ∧ ¬ 𝑘 = 𝐾) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))
7069exp31 418 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑘𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))))
7170ad3antrrr 726 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑘𝑁 → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))))
7271imp 405 . . . . . . 7 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (¬ 𝑘 = 𝐾 → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘)))
7372impcom 406 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑄 ↾ (𝑁 ∖ {𝐾}))‘𝑘) = (𝑄𝑘))
74 fveq2 6890 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑆 Σg 𝑊)‘𝑛) = ((𝑆 Σg 𝑊)‘𝑘))
75 fveq2 6890 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑍 Σg 𝑈)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑘))
7674, 75eqeq12d 2746 . . . . . . 7 (𝑛 = 𝑘 → (((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛) ↔ ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
77 diffi 9181 . . . . . . . . . . . . 13 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
7877ancri 548 . . . . . . . . . . . 12 (𝑁 ∈ Fin → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
7978adantr 479 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
8079ad3antrrr 726 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin))
81 psgnfix.t . . . . . . . . . . . . . . 15 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
82 psgnfix.s . . . . . . . . . . . . . . 15 𝑆 = (SymGrp‘(𝑁 ∖ {𝐾}))
83 eqid 2730 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
8481, 82, 83symgtrf 19378 . . . . . . . . . . . . . 14 𝑇 ⊆ (Base‘𝑆)
85 sswrd 14476 . . . . . . . . . . . . . . 15 (𝑇 ⊆ (Base‘𝑆) → Word 𝑇 ⊆ Word (Base‘𝑆))
8685sseld 3980 . . . . . . . . . . . . . 14 (𝑇 ⊆ (Base‘𝑆) → (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝑆)))
8784, 86ax-mp 5 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑇𝑊 ∈ Word (Base‘𝑆))
8887ad2antrl 724 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) → 𝑊 ∈ Word (Base‘𝑆))
8988adantr 479 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑊 ∈ Word (Base‘𝑆))
90 simpr2 1193 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (♯‘𝑊) = (♯‘𝑈))
9189, 31, 903jca 1126 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈)))
9280, 91jca 510 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))))
9392ad2antrl 724 . . . . . . . 8 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → (((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))))
94 simpr 483 . . . . . . . . . . . 12 ((((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9594ralimi 3081 . . . . . . . . . . 11 (∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
96953ad2ant3 1133 . . . . . . . . . 10 ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9796adantl 480 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
9897ad2antrl 724 . . . . . . . 8 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
99 incom 4200 . . . . . . . . . . 11 ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∩ (𝑁 ∖ {𝐾}))
100 indif 4268 . . . . . . . . . . 11 (𝑁 ∩ (𝑁 ∖ {𝐾})) = (𝑁 ∖ {𝐾})
10199, 100eqtri 2758 . . . . . . . . . 10 ((𝑁 ∖ {𝐾}) ∩ 𝑁) = (𝑁 ∖ {𝐾})
102101eqcomi 2739 . . . . . . . . 9 (𝑁 ∖ {𝐾}) = ((𝑁 ∖ {𝐾}) ∩ 𝑁)
10382, 83, 12, 25, 102gsmsymgreq 19341 . . . . . . . 8 ((((𝑁 ∖ {𝐾}) ∈ Fin ∧ 𝑁 ∈ Fin) ∧ (𝑊 ∈ Word (Base‘𝑆) ∧ 𝑈 ∈ Word (Base‘𝑍) ∧ (♯‘𝑊) = (♯‘𝑈))) → (∀𝑖 ∈ (0..^(♯‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛)))
10493, 98, 103sylc 65 . . . . . . 7 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑆 Σg 𝑊)‘𝑛) = ((𝑍 Σg 𝑈)‘𝑛))
10565anim2i 615 . . . . . . . . . . 11 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐾) → (𝑘𝑁𝑘𝐾))
106105, 67sylibr 233 . . . . . . . . . 10 ((𝑘𝑁 ∧ ¬ 𝑘 = 𝐾) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
107106ex 411 . . . . . . . . 9 (𝑘𝑁 → (¬ 𝑘 = 𝐾𝑘 ∈ (𝑁 ∖ {𝐾})))
108107adantl 480 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (¬ 𝑘 = 𝐾𝑘 ∈ (𝑁 ∖ {𝐾})))
109108impcom 406 . . . . . . 7 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → 𝑘 ∈ (𝑁 ∖ {𝐾}))
11076, 104, 109rspcdva 3612 . . . . . 6 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → ((𝑆 Σg 𝑊)‘𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
11163, 73, 1103eqtr3d 2778 . . . . 5 ((¬ 𝑘 = 𝐾 ∧ (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁)) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
112111ex 411 . . . 4 𝑘 = 𝐾 → ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘)))
11359, 112pm2.61i 182 . . 3 ((((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) ∧ 𝑘𝑁) → (𝑄𝑘) = ((𝑍 Σg 𝑈)‘𝑘))
1147, 21, 113eqfnfvd 7034 . 2 (((((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) ∧ (𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊))) ∧ (𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛)))) → 𝑄 = (𝑍 Σg 𝑈))
115114exp31 418 1 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑊 ∈ Word 𝑇 ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) = (𝑆 Σg 𝑊)) → ((𝑈 ∈ Word 𝑅 ∧ (♯‘𝑊) = (♯‘𝑈) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(((𝑈𝑖)‘𝐾) = 𝐾 ∧ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))) → 𝑄 = (𝑍 Σg 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  wne 2938  wral 3059  {crab 3430  cdif 3944  cin 3946  wss 3947  {csn 4627  ran crn 5676  cres 5677   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7411  Fincfn 8941  0cc0 11112  ..^cfzo 13631  chash 14294  Word cword 14468  Basecbs 17148   Σg cgsu 17390  SymGrpcsymg 19275  pmTrspcpmtr 19350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-seq 13971  df-hash 14295  df-word 14469  df-lsw 14517  df-concat 14525  df-s1 14550  df-substr 14595  df-pfx 14625  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-tset 17220  df-0g 17391  df-gsum 17392  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-efmnd 18786  df-grp 18858  df-minusg 18859  df-subg 19039  df-symg 19276  df-pmtr 19351  df-psgn 19400
This theorem is referenced by:  psgndiflemA  21373
  Copyright terms: Public domain W3C validator