![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2i | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2771 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtri 2768 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: indif 4299 dfrab3 4338 iunidOLD 5084 cocnvcnv2 6289 fmptap 7204 cnvoprab 8101 fpar 8157 fodomr 9194 fodomfir 9396 jech9.3 9883 dju1dif 10242 alephadd 10646 distrnq 11030 ltanq 11040 ltrnq 11048 1p2e3 12436 halfpm6th 12514 numma 12802 numaddc 12806 6p5lem 12828 8p2e10 12838 binom2i 14261 faclbnd4lem1 14342 cats2cat 14911 0.999... 15929 flodddiv4 16461 6gcd4e2 16585 dfphi2 16821 mod2xnegi 17118 karatsuba 17131 1259lem1 17178 setc2obas 18161 oppgtopn 19396 symgplusg 19424 cmnbascntr 19847 mgptopn 20173 ply1plusg 22246 ply1vsca 22247 ply1mulr 22248 restcld 23201 cmpsublem 23428 kgentopon 23567 dfii5 24930 itg1climres 25769 pigt3 26578 ang180lem1 26870 1cubrlem 26902 quart1lem 26916 efiatan 26973 log2cnv 27005 log2ublem3 27009 1sgm2ppw 27262 ppiub 27266 bposlem8 27353 bposlem9 27354 2lgsoddprmlem3c 27474 2lgsoddprmlem3d 27475 bday1s 27894 addsasslem2 28055 seqsval 28312 pw2bday 28436 ax5seglem7 28968 wlknwwlksnbij 29921 2pthd 29973 3pthd 30206 ipidsq 30742 ipdirilem 30861 norm3difi 31179 polid2i 31189 pjclem3 32229 cvmdi 32356 indifundif 32554 dpmul 32877 tocyccntz 33137 ccfldextdgrr 33682 eulerpartlemt 34336 eulerpart 34347 ballotlem1 34451 ballotlemfval0 34460 ballotth 34502 hgt750lem 34628 hgt750lem2 34629 subfaclim 35156 kur14lem6 35179 quad3 35638 iexpire 35697 volsupnfl 37625 dfxrn2 38332 xrninxp 38348 ipiiie0 42413 sn-0tie0 42415 areaquad 43177 wallispilem4 45989 dirkertrigeqlem3 46021 dirkercncflem1 46024 fourierswlem 46151 fouriersw 46152 smflimsuplem8 46748 3exp4mod41 47490 41prothprm 47493 tgoldbachlt 47690 zlmodzxz0 48081 linevalexample 48124 mndtcco 48758 |
Copyright terms: Public domain | W3C validator |