| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2752 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif 4231 dfrab3 4270 iunidOLD 5010 cocnvcnv2 6207 fmptap 7106 cnvoprab 7995 fpar 8049 fodomr 9045 fodomfir 9218 jech9.3 9710 dju1dif 10067 alephadd 10471 distrnq 10855 ltanq 10865 ltrnq 10873 1p2e3 12266 halfpm6th 12346 numma 12635 numaddc 12639 6p5lem 12661 8p2e10 12671 binom2i 14119 faclbnd4lem1 14200 cats2cat 14769 0.999... 15788 flodddiv4 16326 6gcd4e2 16449 dfphi2 16685 mod2xnegi 16983 karatsuba 16995 1259lem1 17042 setc2obas 18001 oppgtopn 19232 symgplusg 19262 cmnbascntr 19684 mgptopn 20033 ply1plusg 22106 ply1vsca 22107 ply1mulr 22108 restcld 23057 cmpsublem 23284 kgentopon 23423 dfii5 24776 itg1climres 25613 pigt3 26425 ang180lem1 26717 1cubrlem 26749 quart1lem 26763 efiatan 26820 log2cnv 26852 log2ublem3 26856 1sgm2ppw 27109 ppiub 27113 bposlem8 27200 bposlem9 27201 2lgsoddprmlem3c 27321 2lgsoddprmlem3d 27322 bday1s 27745 addsasslem2 27916 seqsval 28187 ax5seglem7 28880 wlknwwlksnbij 29833 2pthd 29885 3pthd 30118 ipidsq 30654 ipdirilem 30773 norm3difi 31091 polid2i 31101 pjclem3 32141 cvmdi 32268 indifundif 32468 dpmul 32853 tocyccntz 33086 ccfldextdgrr 33639 cos9thpiminplylem5 33753 eulerpartlemt 34339 eulerpart 34350 ballotlem1 34455 ballotlemfval0 34464 ballotth 34506 hgt750lem 34619 hgt750lem2 34620 subfaclim 35161 kur14lem6 35184 quad3 35643 iexpire 35708 volsupnfl 37645 dfxrn2 38344 dmxrn 38346 xrninxp 38364 1p3e4 42232 ipiiie0 42411 sn-0tie0 42424 areaquad 43189 wallispilem4 46049 dirkertrigeqlem3 46081 dirkercncflem1 46084 fourierswlem 46211 fouriersw 46212 smflimsuplem8 46808 ceil5half3 47324 3exp4mod41 47600 41prothprm 47603 tgoldbachlt 47800 zlmodzxz0 48340 linevalexample 48380 mndtcco 49570 |
| Copyright terms: Public domain | W3C validator |