| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2752 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif 4239 dfrab3 4278 iunidOLD 5020 cocnvcnv2 6219 fmptap 7126 cnvoprab 8018 fpar 8072 fodomr 9069 fodomfir 9255 jech9.3 9743 dju1dif 10102 alephadd 10506 distrnq 10890 ltanq 10900 ltrnq 10908 1p2e3 12300 halfpm6th 12380 numma 12669 numaddc 12673 6p5lem 12695 8p2e10 12705 binom2i 14153 faclbnd4lem1 14234 cats2cat 14804 0.999... 15823 flodddiv4 16361 6gcd4e2 16484 dfphi2 16720 mod2xnegi 17018 karatsuba 17030 1259lem1 17077 setc2obas 18032 oppgtopn 19261 symgplusg 19289 cmnbascntr 19711 mgptopn 20033 ply1plusg 22084 ply1vsca 22085 ply1mulr 22086 restcld 23035 cmpsublem 23262 kgentopon 23401 dfii5 24754 itg1climres 25591 pigt3 26403 ang180lem1 26695 1cubrlem 26727 quart1lem 26741 efiatan 26798 log2cnv 26830 log2ublem3 26834 1sgm2ppw 27087 ppiub 27091 bposlem8 27178 bposlem9 27179 2lgsoddprmlem3c 27299 2lgsoddprmlem3d 27300 bday1s 27719 addsasslem2 27887 seqsval 28158 ax5seglem7 28838 wlknwwlksnbij 29791 2pthd 29843 3pthd 30076 ipidsq 30612 ipdirilem 30731 norm3difi 31049 polid2i 31059 pjclem3 32099 cvmdi 32226 indifundif 32426 dpmul 32806 tocyccntz 33074 ccfldextdgrr 33640 cos9thpiminplylem5 33749 eulerpartlemt 34335 eulerpart 34346 ballotlem1 34451 ballotlemfval0 34460 ballotth 34502 hgt750lem 34615 hgt750lem2 34616 subfaclim 35148 kur14lem6 35171 quad3 35630 iexpire 35695 volsupnfl 37632 dfxrn2 38331 dmxrn 38333 xrninxp 38351 1p3e4 42220 ipiiie0 42399 sn-0tie0 42412 areaquad 43178 wallispilem4 46039 dirkertrigeqlem3 46071 dirkercncflem1 46074 fourierswlem 46201 fouriersw 46202 smflimsuplem8 46798 ceil5half3 47314 3exp4mod41 47590 41prothprm 47593 tgoldbachlt 47790 zlmodzxz0 48317 linevalexample 48357 mndtcco 49547 |
| Copyright terms: Public domain | W3C validator |