![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2i | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2766 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtri 2763 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: indif 4286 dfrab3 4325 iunidOLD 5066 cocnvcnv2 6280 fmptap 7190 cnvoprab 8084 fpar 8140 fodomr 9167 fodomfir 9366 jech9.3 9852 dju1dif 10211 alephadd 10615 distrnq 10999 ltanq 11009 ltrnq 11017 1p2e3 12407 halfpm6th 12485 numma 12775 numaddc 12779 6p5lem 12801 8p2e10 12811 binom2i 14248 faclbnd4lem1 14329 cats2cat 14898 0.999... 15914 flodddiv4 16449 6gcd4e2 16572 dfphi2 16808 mod2xnegi 17105 karatsuba 17118 1259lem1 17165 setc2obas 18148 oppgtopn 19387 symgplusg 19415 cmnbascntr 19838 mgptopn 20164 ply1plusg 22241 ply1vsca 22242 ply1mulr 22243 restcld 23196 cmpsublem 23423 kgentopon 23562 dfii5 24925 itg1climres 25764 pigt3 26575 ang180lem1 26867 1cubrlem 26899 quart1lem 26913 efiatan 26970 log2cnv 27002 log2ublem3 27006 1sgm2ppw 27259 ppiub 27263 bposlem8 27350 bposlem9 27351 2lgsoddprmlem3c 27471 2lgsoddprmlem3d 27472 bday1s 27891 addsasslem2 28052 seqsval 28309 pw2bday 28433 ax5seglem7 28965 wlknwwlksnbij 29918 2pthd 29970 3pthd 30203 ipidsq 30739 ipdirilem 30858 norm3difi 31176 polid2i 31186 pjclem3 32226 cvmdi 32353 indifundif 32552 dpmul 32880 tocyccntz 33147 ccfldextdgrr 33697 eulerpartlemt 34353 eulerpart 34364 ballotlem1 34468 ballotlemfval0 34477 ballotth 34519 hgt750lem 34645 hgt750lem2 34646 subfaclim 35173 kur14lem6 35196 quad3 35655 iexpire 35715 volsupnfl 37652 dfxrn2 38358 xrninxp 38374 ipiiie0 42444 sn-0tie0 42446 areaquad 43205 wallispilem4 46024 dirkertrigeqlem3 46056 dirkercncflem1 46059 fourierswlem 46186 fouriersw 46187 smflimsuplem8 46783 ceil5half3 47280 3exp4mod41 47541 41prothprm 47544 tgoldbachlt 47741 zlmodzxz0 48201 linevalexample 48241 mndtcco 48894 |
Copyright terms: Public domain | W3C validator |