Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2i | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2771 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtri 2768 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-cleq 2732 |
This theorem is referenced by: indif 4209 dfrab3 4249 iunid 4995 cocnvcnv2 6161 fmptap 7039 cnvoprab 7893 fpar 7947 fodomr 8897 jech9.3 9573 dju1dif 9929 alephadd 10334 distrnq 10718 ltanq 10728 ltrnq 10736 1p2e3 12116 halfpm6th 12194 numma 12480 numaddc 12484 6p5lem 12506 8p2e10 12516 binom2i 13926 faclbnd4lem1 14005 cats2cat 14573 0.999... 15591 flodddiv4 16120 6gcd4e2 16244 dfphi2 16473 mod2xnegi 16770 karatsuba 16783 1259lem1 16830 setc2obas 17807 oppgtopn 18958 symgplusg 18988 mgptopn 19730 ply1plusg 21394 ply1vsca 21395 ply1mulr 21396 restcld 22321 cmpsublem 22548 kgentopon 22687 dfii5 24046 itg1climres 24877 pigt3 25672 ang180lem1 25957 1cubrlem 25989 quart1lem 26003 efiatan 26060 log2cnv 26092 log2ublem3 26096 1sgm2ppw 26346 ppiub 26350 bposlem8 26437 bposlem9 26438 2lgsoddprmlem3c 26558 2lgsoddprmlem3d 26559 ax5seglem7 27301 wlknwwlksnbij 28249 2pthd 28301 3pthd 28534 ipidsq 29068 ipdirilem 29187 norm3difi 29505 polid2i 29515 pjclem3 30555 cvmdi 30682 indifundif 30869 dpmul 31183 tocyccntz 31407 ccfldextdgrr 31738 eulerpartlemt 32334 eulerpart 32345 ballotlem1 32449 ballotlemfval0 32458 ballotth 32500 hgt750lem 32627 hgt750lem2 32628 subfaclim 33146 kur14lem6 33169 quad3 33624 iexpire 33697 bday1s 34021 volsupnfl 35818 dfxrn2 36502 xrninxp 36514 ipiiie0 40416 sn-0tie0 40418 areaquad 41044 wallispilem4 43580 dirkertrigeqlem3 43612 dirkercncflem1 43615 fourierswlem 43742 fouriersw 43743 smflimsuplem8 44328 3exp4mod41 45037 41prothprm 45040 tgoldbachlt 45237 zlmodzxz0 45661 linevalexample 45705 mndtcco 46341 |
Copyright terms: Public domain | W3C validator |