| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2760 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2757 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 |
| This theorem is referenced by: indif 4260 dfrab3 4299 iunidOLD 5041 cocnvcnv2 6258 fmptap 7172 cnvoprab 8067 fpar 8123 fodomr 9150 fodomfir 9350 jech9.3 9836 dju1dif 10195 alephadd 10599 distrnq 10983 ltanq 10993 ltrnq 11001 1p2e3 12391 halfpm6th 12471 numma 12760 numaddc 12764 6p5lem 12786 8p2e10 12796 binom2i 14233 faclbnd4lem1 14314 cats2cat 14883 0.999... 15899 flodddiv4 16434 6gcd4e2 16557 dfphi2 16793 mod2xnegi 17091 karatsuba 17103 1259lem1 17150 setc2obas 18110 oppgtopn 19340 symgplusg 19368 cmnbascntr 19791 mgptopn 20113 ply1plusg 22173 ply1vsca 22174 ply1mulr 22175 restcld 23126 cmpsublem 23353 kgentopon 23492 dfii5 24847 itg1climres 25685 pigt3 26496 ang180lem1 26788 1cubrlem 26820 quart1lem 26834 efiatan 26891 log2cnv 26923 log2ublem3 26927 1sgm2ppw 27180 ppiub 27184 bposlem8 27271 bposlem9 27272 2lgsoddprmlem3c 27392 2lgsoddprmlem3d 27393 bday1s 27812 addsasslem2 27973 seqsval 28230 pw2bday 28354 ax5seglem7 28880 wlknwwlksnbij 29836 2pthd 29888 3pthd 30121 ipidsq 30657 ipdirilem 30776 norm3difi 31094 polid2i 31104 pjclem3 32144 cvmdi 32271 indifundif 32471 dpmul 32835 tocyccntz 33103 ccfldextdgrr 33659 eulerpartlemt 34332 eulerpart 34343 ballotlem1 34448 ballotlemfval0 34457 ballotth 34499 hgt750lem 34625 hgt750lem2 34626 subfaclim 35152 kur14lem6 35175 quad3 35634 iexpire 35694 volsupnfl 37631 dfxrn2 38336 xrninxp 38352 ipiiie0 42430 sn-0tie0 42432 areaquad 43191 wallispilem4 46040 dirkertrigeqlem3 46072 dirkercncflem1 46075 fourierswlem 46202 fouriersw 46203 smflimsuplem8 46799 ceil5half3 47300 3exp4mod41 47561 41prothprm 47564 tgoldbachlt 47761 zlmodzxz0 48230 linevalexample 48270 mndtcco 49190 |
| Copyright terms: Public domain | W3C validator |