Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2i | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2769 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtri 2766 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: indif 4200 dfrab3 4240 iunid 4986 cocnvcnv2 6151 fmptap 7024 cnvoprab 7873 fpar 7927 fodomr 8864 jech9.3 9503 dju1dif 9859 alephadd 10264 distrnq 10648 ltanq 10658 ltrnq 10666 1p2e3 12046 halfpm6th 12124 numma 12410 numaddc 12414 6p5lem 12436 8p2e10 12446 binom2i 13856 faclbnd4lem1 13935 cats2cat 14503 0.999... 15521 flodddiv4 16050 6gcd4e2 16174 dfphi2 16403 mod2xnegi 16700 karatsuba 16713 1259lem1 16760 setc2obas 17725 oppgtopn 18875 symgplusg 18905 mgptopn 19647 ply1plusg 21306 ply1vsca 21307 ply1mulr 21308 restcld 22231 cmpsublem 22458 kgentopon 22597 dfii5 23954 itg1climres 24784 pigt3 25579 ang180lem1 25864 1cubrlem 25896 quart1lem 25910 efiatan 25967 log2cnv 25999 log2ublem3 26003 1sgm2ppw 26253 ppiub 26257 bposlem8 26344 bposlem9 26345 2lgsoddprmlem3c 26465 2lgsoddprmlem3d 26466 ax5seglem7 27206 wlknwwlksnbij 28154 2pthd 28206 3pthd 28439 ipidsq 28973 ipdirilem 29092 norm3difi 29410 polid2i 29420 pjclem3 30460 cvmdi 30587 indifundif 30774 dpmul 31089 tocyccntz 31313 ccfldextdgrr 31644 eulerpartlemt 32238 eulerpart 32249 ballotlem1 32353 ballotlemfval0 32362 ballotth 32404 hgt750lem 32531 hgt750lem2 32532 subfaclim 33050 kur14lem6 33073 quad3 33528 iexpire 33607 bday1s 33952 volsupnfl 35749 dfxrn2 36433 xrninxp 36445 ipiiie0 40340 sn-0tie0 40342 areaquad 40963 wallispilem4 43499 dirkertrigeqlem3 43531 dirkercncflem1 43534 fourierswlem 43661 fouriersw 43662 smflimsuplem8 44247 3exp4mod41 44956 41prothprm 44959 tgoldbachlt 45156 zlmodzxz0 45580 linevalexample 45624 mndtcco 46258 |
Copyright terms: Public domain | W3C validator |