| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2752 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif 4243 dfrab3 4282 iunidOLD 5025 cocnvcnv2 6231 fmptap 7144 cnvoprab 8039 fpar 8095 fodomr 9092 fodomfir 9279 jech9.3 9767 dju1dif 10126 alephadd 10530 distrnq 10914 ltanq 10924 ltrnq 10932 1p2e3 12324 halfpm6th 12404 numma 12693 numaddc 12697 6p5lem 12719 8p2e10 12729 binom2i 14177 faclbnd4lem1 14258 cats2cat 14828 0.999... 15847 flodddiv4 16385 6gcd4e2 16508 dfphi2 16744 mod2xnegi 17042 karatsuba 17054 1259lem1 17101 setc2obas 18056 oppgtopn 19285 symgplusg 19313 cmnbascntr 19735 mgptopn 20057 ply1plusg 22108 ply1vsca 22109 ply1mulr 22110 restcld 23059 cmpsublem 23286 kgentopon 23425 dfii5 24778 itg1climres 25615 pigt3 26427 ang180lem1 26719 1cubrlem 26751 quart1lem 26765 efiatan 26822 log2cnv 26854 log2ublem3 26858 1sgm2ppw 27111 ppiub 27115 bposlem8 27202 bposlem9 27203 2lgsoddprmlem3c 27323 2lgsoddprmlem3d 27324 bday1s 27743 addsasslem2 27911 seqsval 28182 ax5seglem7 28862 wlknwwlksnbij 29818 2pthd 29870 3pthd 30103 ipidsq 30639 ipdirilem 30758 norm3difi 31076 polid2i 31086 pjclem3 32126 cvmdi 32253 indifundif 32453 dpmul 32833 tocyccntz 33101 ccfldextdgrr 33667 cos9thpiminplylem5 33776 eulerpartlemt 34362 eulerpart 34373 ballotlem1 34478 ballotlemfval0 34487 ballotth 34529 hgt750lem 34642 hgt750lem2 34643 subfaclim 35175 kur14lem6 35198 quad3 35657 iexpire 35722 volsupnfl 37659 dfxrn2 38358 dmxrn 38360 xrninxp 38378 1p3e4 42247 ipiiie0 42426 sn-0tie0 42439 areaquad 43205 wallispilem4 46066 dirkertrigeqlem3 46098 dirkercncflem1 46101 fourierswlem 46228 fouriersw 46229 smflimsuplem8 46825 ceil5half3 47338 3exp4mod41 47614 41prothprm 47617 tgoldbachlt 47814 zlmodzxz0 48341 linevalexample 48381 mndtcco 49571 |
| Copyright terms: Public domain | W3C validator |