| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2757 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2754 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: indif 4227 dfrab3 4266 cocnvcnv2 6206 fmptap 7104 cnvoprab 7992 fpar 8046 fodomr 9041 fodomfir 9212 jech9.3 9707 dju1dif 10064 alephadd 10468 distrnq 10852 ltanq 10862 ltrnq 10870 1p2e3 12263 halfpm6th 12343 numma 12632 numaddc 12636 6p5lem 12658 8p2e10 12668 binom2i 14119 faclbnd4lem1 14200 cats2cat 14769 0.999... 15788 flodddiv4 16326 6gcd4e2 16449 dfphi2 16685 mod2xnegi 16983 karatsuba 16995 1259lem1 17042 setc2obas 18001 oppgtopn 19265 symgplusg 19295 cmnbascntr 19717 mgptopn 20066 ply1plusg 22136 ply1vsca 22137 ply1mulr 22138 restcld 23087 cmpsublem 23314 kgentopon 23453 dfii5 24805 itg1climres 25642 pigt3 26454 ang180lem1 26746 1cubrlem 26778 quart1lem 26792 efiatan 26849 log2cnv 26881 log2ublem3 26885 1sgm2ppw 27138 ppiub 27142 bposlem8 27229 bposlem9 27230 2lgsoddprmlem3c 27350 2lgsoddprmlem3d 27351 bday1s 27775 addsasslem2 27947 seqsval 28218 ax5seglem7 28913 wlknwwlksnbij 29866 2pthd 29918 3pthd 30154 ipidsq 30690 ipdirilem 30809 norm3difi 31127 polid2i 31137 pjclem3 32177 cvmdi 32304 indifundif 32504 dpmul 32893 tocyccntz 33113 ccfldextdgrr 33685 cos9thpiminplylem5 33799 eulerpartlemt 34384 eulerpart 34395 ballotlem1 34500 ballotlemfval0 34509 ballotth 34551 hgt750lem 34664 hgt750lem2 34665 subfaclim 35232 kur14lem6 35255 quad3 35714 iexpire 35779 volsupnfl 37713 dfxrn2 38412 dmxrn 38414 xrninxp 38432 1p3e4 42300 ipiiie0 42479 sn-0tie0 42492 areaquad 43257 wallispilem4 46114 dirkertrigeqlem3 46146 dirkercncflem1 46149 fourierswlem 46276 fouriersw 46277 smflimsuplem8 46873 ceil5half3 47379 3exp4mod41 47655 41prothprm 47658 tgoldbachlt 47855 zlmodzxz0 48395 linevalexample 48435 mndtcco 49625 |
| Copyright terms: Public domain | W3C validator |