Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version |
Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
Ref | Expression |
---|---|
3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
3eqtr2i | ⊢ 𝐴 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 1, 2 | eqtr4i 2769 | . 2 ⊢ 𝐴 = 𝐶 |
4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
5 | 3, 4 | eqtri 2766 | 1 ⊢ 𝐴 = 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: indif 4203 dfrab3 4243 iunid 4990 cocnvcnv2 6162 fmptap 7042 cnvoprab 7900 fpar 7956 fodomr 8915 jech9.3 9572 dju1dif 9928 alephadd 10333 distrnq 10717 ltanq 10727 ltrnq 10735 1p2e3 12116 halfpm6th 12194 numma 12481 numaddc 12485 6p5lem 12507 8p2e10 12517 binom2i 13928 faclbnd4lem1 14007 cats2cat 14575 0.999... 15593 flodddiv4 16122 6gcd4e2 16246 dfphi2 16475 mod2xnegi 16772 karatsuba 16785 1259lem1 16832 setc2obas 17809 oppgtopn 18960 symgplusg 18990 mgptopn 19732 ply1plusg 21396 ply1vsca 21397 ply1mulr 21398 restcld 22323 cmpsublem 22550 kgentopon 22689 dfii5 24048 itg1climres 24879 pigt3 25674 ang180lem1 25959 1cubrlem 25991 quart1lem 26005 efiatan 26062 log2cnv 26094 log2ublem3 26098 1sgm2ppw 26348 ppiub 26352 bposlem8 26439 bposlem9 26440 2lgsoddprmlem3c 26560 2lgsoddprmlem3d 26561 ax5seglem7 27303 wlknwwlksnbij 28253 2pthd 28305 3pthd 28538 ipidsq 29072 ipdirilem 29191 norm3difi 29509 polid2i 29519 pjclem3 30559 cvmdi 30686 indifundif 30873 dpmul 31187 tocyccntz 31411 ccfldextdgrr 31742 eulerpartlemt 32338 eulerpart 32349 ballotlem1 32453 ballotlemfval0 32462 ballotth 32504 hgt750lem 32631 hgt750lem2 32632 subfaclim 33150 kur14lem6 33173 quad3 33628 iexpire 33701 bday1s 34025 volsupnfl 35822 dfxrn2 36506 xrninxp 36518 ipiiie0 40419 sn-0tie0 40421 areaquad 41047 wallispilem4 43609 dirkertrigeqlem3 43641 dirkercncflem1 43644 fourierswlem 43771 fouriersw 43772 smflimsuplem8 44360 3exp4mod41 45068 41prothprm 45071 tgoldbachlt 45268 zlmodzxz0 45692 linevalexample 45736 mndtcco 46372 |
Copyright terms: Public domain | W3C validator |