| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eqtr2i | Structured version Visualization version GIF version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 3-Aug-2006.) |
| Ref | Expression |
|---|---|
| 3eqtr2i.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr2i.2 | ⊢ 𝐶 = 𝐵 |
| 3eqtr2i.3 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr2i | ⊢ 𝐴 = 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr2i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 2 | 3eqtr2i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 1, 2 | eqtr4i 2755 | . 2 ⊢ 𝐴 = 𝐶 |
| 4 | 3eqtr2i.3 | . 2 ⊢ 𝐶 = 𝐷 | |
| 5 | 3, 4 | eqtri 2752 | 1 ⊢ 𝐴 = 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: indif 4239 dfrab3 4278 iunidOLD 5020 cocnvcnv2 6219 fmptap 7126 cnvoprab 8018 fpar 8072 fodomr 9069 fodomfir 9255 jech9.3 9743 dju1dif 10102 alephadd 10506 distrnq 10890 ltanq 10900 ltrnq 10908 1p2e3 12300 halfpm6th 12380 numma 12669 numaddc 12673 6p5lem 12695 8p2e10 12705 binom2i 14153 faclbnd4lem1 14234 cats2cat 14804 0.999... 15823 flodddiv4 16361 6gcd4e2 16484 dfphi2 16720 mod2xnegi 17018 karatsuba 17030 1259lem1 17077 setc2obas 18036 oppgtopn 19267 symgplusg 19297 cmnbascntr 19719 mgptopn 20068 ply1plusg 22141 ply1vsca 22142 ply1mulr 22143 restcld 23092 cmpsublem 23319 kgentopon 23458 dfii5 24811 itg1climres 25648 pigt3 26460 ang180lem1 26752 1cubrlem 26784 quart1lem 26798 efiatan 26855 log2cnv 26887 log2ublem3 26891 1sgm2ppw 27144 ppiub 27148 bposlem8 27235 bposlem9 27236 2lgsoddprmlem3c 27356 2lgsoddprmlem3d 27357 bday1s 27780 addsasslem2 27951 seqsval 28222 ax5seglem7 28915 wlknwwlksnbij 29868 2pthd 29920 3pthd 30153 ipidsq 30689 ipdirilem 30808 norm3difi 31126 polid2i 31136 pjclem3 32176 cvmdi 32303 indifundif 32503 dpmul 32883 tocyccntz 33116 ccfldextdgrr 33660 cos9thpiminplylem5 33769 eulerpartlemt 34355 eulerpart 34366 ballotlem1 34471 ballotlemfval0 34480 ballotth 34522 hgt750lem 34635 hgt750lem2 34636 subfaclim 35168 kur14lem6 35191 quad3 35650 iexpire 35715 volsupnfl 37652 dfxrn2 38351 dmxrn 38353 xrninxp 38371 1p3e4 42240 ipiiie0 42419 sn-0tie0 42432 areaquad 43198 wallispilem4 46059 dirkertrigeqlem3 46091 dirkercncflem1 46094 fourierswlem 46221 fouriersw 46222 smflimsuplem8 46818 ceil5half3 47334 3exp4mod41 47610 41prothprm 47613 tgoldbachlt 47810 zlmodzxz0 48337 linevalexample 48377 mndtcco 49567 |
| Copyright terms: Public domain | W3C validator |