MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdif Structured version   Visualization version   GIF version

Theorem resdif 6821
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resdif ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))

Proof of Theorem resdif
StepHypRef Expression
1 fofun 6773 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → Fun (𝐹𝐴))
2 difss 4099 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
3 fof 6772 . . . . . . . 8 ((𝐹𝐴):𝐴onto𝐶 → (𝐹𝐴):𝐴𝐶)
43fdmd 6698 . . . . . . 7 ((𝐹𝐴):𝐴onto𝐶 → dom (𝐹𝐴) = 𝐴)
52, 4sseqtrrid 3990 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → (𝐴𝐵) ⊆ dom (𝐹𝐴))
6 fores 6782 . . . . . 6 ((Fun (𝐹𝐴) ∧ (𝐴𝐵) ⊆ dom (𝐹𝐴)) → ((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
71, 5, 6syl2anc 584 . . . . 5 ((𝐹𝐴):𝐴onto𝐶 → ((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
8 resres 5963 . . . . . . . 8 ((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∩ (𝐴𝐵)))
9 indif 4243 . . . . . . . . 9 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
109reseq2i 5947 . . . . . . . 8 (𝐹 ↾ (𝐴 ∩ (𝐴𝐵))) = (𝐹 ↾ (𝐴𝐵))
118, 10eqtri 2752 . . . . . . 7 ((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴𝐵))
12 foeq1 6768 . . . . . . 7 (((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴𝐵)) → (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵))))
1311, 12ax-mp 5 . . . . . 6 (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
1411rneqi 5901 . . . . . . . 8 ran ((𝐹𝐴) ↾ (𝐴𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
15 df-ima 5651 . . . . . . . 8 ((𝐹𝐴) “ (𝐴𝐵)) = ran ((𝐹𝐴) ↾ (𝐴𝐵))
16 df-ima 5651 . . . . . . . 8 (𝐹 “ (𝐴𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
1714, 15, 163eqtr4i 2762 . . . . . . 7 ((𝐹𝐴) “ (𝐴𝐵)) = (𝐹 “ (𝐴𝐵))
18 foeq3 6770 . . . . . . 7 (((𝐹𝐴) “ (𝐴𝐵)) = (𝐹 “ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵))))
1917, 18ax-mp 5 . . . . . 6 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
2013, 19bitri 275 . . . . 5 (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
217, 20sylib 218 . . . 4 ((𝐹𝐴):𝐴onto𝐶 → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
22 funres11 6593 . . . 4 (Fun 𝐹 → Fun (𝐹 ↾ (𝐴𝐵)))
23 dff1o3 6806 . . . . 5 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)) ↔ ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)) ∧ Fun (𝐹 ↾ (𝐴𝐵))))
2423biimpri 228 . . . 4 (((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)) ∧ Fun (𝐹 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
2521, 22, 24syl2anr 597 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
26253adant3 1132 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
27 df-ima 5651 . . . . . . 7 (𝐹𝐴) = ran (𝐹𝐴)
28 forn 6775 . . . . . . 7 ((𝐹𝐴):𝐴onto𝐶 → ran (𝐹𝐴) = 𝐶)
2927, 28eqtrid 2776 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → (𝐹𝐴) = 𝐶)
30 df-ima 5651 . . . . . . 7 (𝐹𝐵) = ran (𝐹𝐵)
31 forn 6775 . . . . . . 7 ((𝐹𝐵):𝐵onto𝐷 → ran (𝐹𝐵) = 𝐷)
3230, 31eqtrid 2776 . . . . . 6 ((𝐹𝐵):𝐵onto𝐷 → (𝐹𝐵) = 𝐷)
3329, 32anim12i 613 . . . . 5 (((𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → ((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷))
34 imadif 6600 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
35 difeq12 4084 . . . . . 6 (((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷) → ((𝐹𝐴) ∖ (𝐹𝐵)) = (𝐶𝐷))
3634, 35sylan9eq 2784 . . . . 5 ((Fun 𝐹 ∧ ((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷)) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
3733, 36sylan2 593 . . . 4 ((Fun 𝐹 ∧ ((𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷)) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
38373impb 1114 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
3938f1oeq3d 6797 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷)))
4026, 39mpbid 232 1 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  cdif 3911  cin 3913  wss 3914  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  resin  6822  dif1enlem  9120  dif1enlemOLD  9121  canthp1lem2  10606  symgcom  33040  cycpmconjvlem  33098  subfacp1lem3  35169  subfacp1lem5  35171
  Copyright terms: Public domain W3C validator