MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resdif Structured version   Visualization version   GIF version

Theorem resdif 6464
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resdif ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))

Proof of Theorem resdif
StepHypRef Expression
1 fofun 6420 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → Fun (𝐹𝐴))
2 difss 3999 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
3 fof 6419 . . . . . . . 8 ((𝐹𝐴):𝐴onto𝐶 → (𝐹𝐴):𝐴𝐶)
43fdmd 6353 . . . . . . 7 ((𝐹𝐴):𝐴onto𝐶 → dom (𝐹𝐴) = 𝐴)
52, 4syl5sseqr 3911 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → (𝐴𝐵) ⊆ dom (𝐹𝐴))
6 fores 6429 . . . . . 6 ((Fun (𝐹𝐴) ∧ (𝐴𝐵) ⊆ dom (𝐹𝐴)) → ((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
71, 5, 6syl2anc 576 . . . . 5 ((𝐹𝐴):𝐴onto𝐶 → ((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
8 resres 5711 . . . . . . . 8 ((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∩ (𝐴𝐵)))
9 indif 4134 . . . . . . . . 9 (𝐴 ∩ (𝐴𝐵)) = (𝐴𝐵)
109reseq2i 5692 . . . . . . . 8 (𝐹 ↾ (𝐴 ∩ (𝐴𝐵))) = (𝐹 ↾ (𝐴𝐵))
118, 10eqtri 2803 . . . . . . 7 ((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴𝐵))
12 foeq1 6415 . . . . . . 7 (((𝐹𝐴) ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴𝐵)) → (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵))))
1311, 12ax-mp 5 . . . . . 6 (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)))
1411rneqi 5650 . . . . . . . 8 ran ((𝐹𝐴) ↾ (𝐴𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
15 df-ima 5420 . . . . . . . 8 ((𝐹𝐴) “ (𝐴𝐵)) = ran ((𝐹𝐴) ↾ (𝐴𝐵))
16 df-ima 5420 . . . . . . . 8 (𝐹 “ (𝐴𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
1714, 15, 163eqtr4i 2813 . . . . . . 7 ((𝐹𝐴) “ (𝐴𝐵)) = (𝐹 “ (𝐴𝐵))
18 foeq3 6417 . . . . . . 7 (((𝐹𝐴) “ (𝐴𝐵)) = (𝐹 “ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵))))
1917, 18ax-mp 5 . . . . . 6 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
2013, 19bitri 267 . . . . 5 (((𝐹𝐴) ↾ (𝐴𝐵)):(𝐴𝐵)–onto→((𝐹𝐴) “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
217, 20sylib 210 . . . 4 ((𝐹𝐴):𝐴onto𝐶 → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)))
22 funres11 6264 . . . 4 (Fun 𝐹 → Fun (𝐹 ↾ (𝐴𝐵)))
23 dff1o3 6450 . . . . 5 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)) ↔ ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)) ∧ Fun (𝐹 ↾ (𝐴𝐵))))
2423biimpri 220 . . . 4 (((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐹 “ (𝐴𝐵)) ∧ Fun (𝐹 ↾ (𝐴𝐵))) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
2521, 22, 24syl2anr 587 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
26253adant3 1112 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)))
27 df-ima 5420 . . . . . . 7 (𝐹𝐴) = ran (𝐹𝐴)
28 forn 6422 . . . . . . 7 ((𝐹𝐴):𝐴onto𝐶 → ran (𝐹𝐴) = 𝐶)
2927, 28syl5eq 2827 . . . . . 6 ((𝐹𝐴):𝐴onto𝐶 → (𝐹𝐴) = 𝐶)
30 df-ima 5420 . . . . . . 7 (𝐹𝐵) = ran (𝐹𝐵)
31 forn 6422 . . . . . . 7 ((𝐹𝐵):𝐵onto𝐷 → ran (𝐹𝐵) = 𝐷)
3230, 31syl5eq 2827 . . . . . 6 ((𝐹𝐵):𝐵onto𝐷 → (𝐹𝐵) = 𝐷)
3329, 32anim12i 603 . . . . 5 (((𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → ((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷))
34 imadif 6271 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
35 difeq12 3985 . . . . . 6 (((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷) → ((𝐹𝐴) ∖ (𝐹𝐵)) = (𝐶𝐷))
3634, 35sylan9eq 2835 . . . . 5 ((Fun 𝐹 ∧ ((𝐹𝐴) = 𝐶 ∧ (𝐹𝐵) = 𝐷)) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
3733, 36sylan2 583 . . . 4 ((Fun 𝐹 ∧ ((𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷)) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
38373impb 1095 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 “ (𝐴𝐵)) = (𝐶𝐷))
3938f1oeq3d 6441 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐹 “ (𝐴𝐵)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷)))
4026, 39mpbid 224 1 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  cdif 3827  cin 3829  wss 3830  ccnv 5406  dom cdm 5407  ran crn 5408  cres 5409  cima 5410  Fun wfun 6182  ontowfo 6186  1-1-ontowf1o 6187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-opab 4992  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195
This theorem is referenced by:  resin  6465  canthp1lem2  9873  subfacp1lem3  32011  subfacp1lem5  32013
  Copyright terms: Public domain W3C validator