MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem11 Structured version   Visualization version   GIF version

Theorem kmlem11 10155
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem11 (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
Distinct variable groups:   𝑥,𝑧,𝑢,𝑡   𝑧,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem11
StepHypRef Expression
1 kmlem9.1 . . . . . 6 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
21unieqi 4922 . . . . 5 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
3 vex 3479 . . . . . . 7 𝑡 ∈ V
43difexi 5329 . . . . . 6 (𝑡 (𝑥 ∖ {𝑡})) ∈ V
54dfiun2 5037 . . . . 5 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
62, 5eqtr4i 2764 . . . 4 𝐴 = 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡}))
76ineq2i 4210 . . 3 (𝑧 𝐴) = (𝑧 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})))
8 iunin2 5075 . . 3 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})))
97, 8eqtr4i 2764 . 2 (𝑧 𝐴) = 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))
10 undif2 4477 . . . . . 6 ({𝑧} ∪ (𝑥 ∖ {𝑧})) = ({𝑧} ∪ 𝑥)
11 snssi 4812 . . . . . . 7 (𝑧𝑥 → {𝑧} ⊆ 𝑥)
12 ssequn1 4181 . . . . . . 7 ({𝑧} ⊆ 𝑥 ↔ ({𝑧} ∪ 𝑥) = 𝑥)
1311, 12sylib 217 . . . . . 6 (𝑧𝑥 → ({𝑧} ∪ 𝑥) = 𝑥)
1410, 13eqtr2id 2786 . . . . 5 (𝑧𝑥𝑥 = ({𝑧} ∪ (𝑥 ∖ {𝑧})))
1514iuneq1d 5025 . . . 4 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
16 iunxun 5098 . . . . . 6 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ( 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
17 vex 3479 . . . . . . . 8 𝑧 ∈ V
18 difeq1 4116 . . . . . . . . . 10 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑡})))
19 sneq 4639 . . . . . . . . . . . . 13 (𝑡 = 𝑧 → {𝑡} = {𝑧})
2019difeq2d 4123 . . . . . . . . . . . 12 (𝑡 = 𝑧 → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
2120unieqd 4923 . . . . . . . . . . 11 (𝑡 = 𝑧 (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
2221difeq2d 4123 . . . . . . . . . 10 (𝑡 = 𝑧 → (𝑧 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
2318, 22eqtrd 2773 . . . . . . . . 9 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
2423ineq2d 4213 . . . . . . . 8 (𝑡 = 𝑧 → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))))
2517, 24iunxsn 5095 . . . . . . 7 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧})))
2625uneq1i 4160 . . . . . 6 ( 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
2716, 26eqtri 2761 . . . . 5 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
28 eldifsni 4794 . . . . . . . . . 10 (𝑡 ∈ (𝑥 ∖ {𝑧}) → 𝑡𝑧)
29 incom 4202 . . . . . . . . . . . 12 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑧)
30 kmlem4 10148 . . . . . . . . . . . 12 ((𝑧𝑥𝑡𝑧) → ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑧) = ∅)
3129, 30eqtrid 2785 . . . . . . . . . . 11 ((𝑧𝑥𝑡𝑧) → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
3231ex 414 . . . . . . . . . 10 (𝑧𝑥 → (𝑡𝑧 → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅))
3328, 32syl5 34 . . . . . . . . 9 (𝑧𝑥 → (𝑡 ∈ (𝑥 ∖ {𝑧}) → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅))
3433ralrimiv 3146 . . . . . . . 8 (𝑧𝑥 → ∀𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
35 iuneq2 5017 . . . . . . . 8 (∀𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅ → 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ (𝑥 ∖ {𝑧})∅)
3634, 35syl 17 . . . . . . 7 (𝑧𝑥 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ (𝑥 ∖ {𝑧})∅)
37 iun0 5066 . . . . . . 7 𝑡 ∈ (𝑥 ∖ {𝑧})∅ = ∅
3836, 37eqtrdi 2789 . . . . . 6 (𝑧𝑥 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
3938uneq2d 4164 . . . . 5 (𝑧𝑥 → ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
4027, 39eqtrid 2785 . . . 4 (𝑧𝑥 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
4115, 40eqtrd 2773 . . 3 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
42 un0 4391 . . . 4 ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧})))
43 indif 4270 . . . 4 (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) = (𝑧 (𝑥 ∖ {𝑧}))
4442, 43eqtri 2761 . . 3 ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 (𝑥 ∖ {𝑧}))
4541, 44eqtrdi 2789 . 2 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 (𝑥 ∖ {𝑧})))
469, 45eqtrid 2785 1 (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wne 2941  wral 3062  wrex 3071  cdif 3946  cun 3947  cin 3948  wss 3949  c0 4323  {csn 4629   cuni 4909   ciun 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2704  ax-sep 5300
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-sn 4630  df-uni 4910  df-iun 5000
This theorem is referenced by:  kmlem12  10156
  Copyright terms: Public domain W3C validator