Proof of Theorem kmlem11
| Step | Hyp | Ref
| Expression |
| 1 | | kmlem9.1 |
. . . . . 6
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} |
| 2 | 1 | unieqi 4900 |
. . . . 5
⊢ ∪ 𝐴 =
∪ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} |
| 3 | | vex 3468 |
. . . . . . 7
⊢ 𝑡 ∈ V |
| 4 | 3 | difexi 5305 |
. . . . . 6
⊢ (𝑡 ∖ ∪ (𝑥
∖ {𝑡})) ∈
V |
| 5 | 4 | dfiun2 5014 |
. . . . 5
⊢ ∪ 𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = ∪ {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} |
| 6 | 2, 5 | eqtr4i 2762 |
. . . 4
⊢ ∪ 𝐴 =
∪ 𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) |
| 7 | 6 | ineq2i 4197 |
. . 3
⊢ (𝑧 ∩ ∪ 𝐴) =
(𝑧 ∩ ∪ 𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) |
| 8 | | iunin2 5052 |
. . 3
⊢ ∪ 𝑡 ∈ 𝑥 (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = (𝑧 ∩ ∪
𝑡 ∈ 𝑥 (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) |
| 9 | 7, 8 | eqtr4i 2762 |
. 2
⊢ (𝑧 ∩ ∪ 𝐴) =
∪ 𝑡 ∈ 𝑥 (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) |
| 10 | | undif2 4457 |
. . . . . 6
⊢ ({𝑧} ∪ (𝑥 ∖ {𝑧})) = ({𝑧} ∪ 𝑥) |
| 11 | | snssi 4789 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑥 → {𝑧} ⊆ 𝑥) |
| 12 | | ssequn1 4166 |
. . . . . . 7
⊢ ({𝑧} ⊆ 𝑥 ↔ ({𝑧} ∪ 𝑥) = 𝑥) |
| 13 | 11, 12 | sylib 218 |
. . . . . 6
⊢ (𝑧 ∈ 𝑥 → ({𝑧} ∪ 𝑥) = 𝑥) |
| 14 | 10, 13 | eqtr2id 2784 |
. . . . 5
⊢ (𝑧 ∈ 𝑥 → 𝑥 = ({𝑧} ∪ (𝑥 ∖ {𝑧}))) |
| 15 | 14 | iuneq1d 5000 |
. . . 4
⊢ (𝑧 ∈ 𝑥 → ∪
𝑡 ∈ 𝑥 (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∪
𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
| 16 | | iunxun 5075 |
. . . . . 6
⊢ ∪ 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = (∪
𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) ∪ ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
| 17 | | vex 3468 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 18 | | difeq1 4099 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑧 → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑡}))) |
| 19 | | sneq 4616 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → {𝑡} = {𝑧}) |
| 20 | 19 | difeq2d 4106 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧})) |
| 21 | 20 | unieqd 4901 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑧 → ∪ (𝑥 ∖ {𝑡}) = ∪ (𝑥 ∖ {𝑧})) |
| 22 | 21 | difeq2d 4106 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑧 → (𝑧 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
| 23 | 18, 22 | eqtrd 2771 |
. . . . . . . . 9
⊢ (𝑡 = 𝑧 → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
| 24 | 23 | ineq2d 4200 |
. . . . . . . 8
⊢ (𝑡 = 𝑧 → (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})))) |
| 25 | 17, 24 | iunxsn 5072 |
. . . . . . 7
⊢ ∪ 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
| 26 | 25 | uneq1i 4144 |
. . . . . 6
⊢ (∪ 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) ∪ ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
| 27 | 16, 26 | eqtri 2759 |
. . . . 5
⊢ ∪ 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
| 28 | | eldifsni 4771 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝑥 ∖ {𝑧}) → 𝑡 ≠ 𝑧) |
| 29 | | incom 4189 |
. . . . . . . . . . . 12
⊢ (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑧) |
| 30 | | kmlem4 10173 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑡 ≠ 𝑧) → ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ 𝑧) = ∅) |
| 31 | 29, 30 | eqtrid 2783 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑡 ≠ 𝑧) → (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∅) |
| 32 | 31 | ex 412 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → (𝑡 ≠ 𝑧 → (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∅)) |
| 33 | 28, 32 | syl5 34 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑥 → (𝑡 ∈ (𝑥 ∖ {𝑧}) → (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∅)) |
| 34 | 33 | ralrimiv 3132 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑥 → ∀𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∅) |
| 35 | | iuneq2 4992 |
. . . . . . . 8
⊢
(∀𝑡 ∈
(𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∅ → ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∪
𝑡 ∈ (𝑥 ∖ {𝑧})∅) |
| 36 | 34, 35 | syl 17 |
. . . . . . 7
⊢ (𝑧 ∈ 𝑥 → ∪
𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∪
𝑡 ∈ (𝑥 ∖ {𝑧})∅) |
| 37 | | iun0 5043 |
. . . . . . 7
⊢ ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})∅ = ∅ |
| 38 | 36, 37 | eqtrdi 2787 |
. . . . . 6
⊢ (𝑧 ∈ 𝑥 → ∪
𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ∅) |
| 39 | 38 | uneq2d 4148 |
. . . . 5
⊢ (𝑧 ∈ 𝑥 → ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∅)) |
| 40 | 27, 39 | eqtrid 2783 |
. . . 4
⊢ (𝑧 ∈ 𝑥 → ∪
𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∅)) |
| 41 | 15, 40 | eqtrd 2771 |
. . 3
⊢ (𝑧 ∈ 𝑥 → ∪
𝑡 ∈ 𝑥 (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∅)) |
| 42 | | un0 4374 |
. . . 4
⊢ ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
| 43 | | indif 4260 |
. . . 4
⊢ (𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) |
| 44 | 42, 43 | eqtri 2759 |
. . 3
⊢ ((𝑧 ∩ (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) |
| 45 | 41, 44 | eqtrdi 2787 |
. 2
⊢ (𝑧 ∈ 𝑥 → ∪
𝑡 ∈ 𝑥 (𝑧 ∩ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |
| 46 | 9, 45 | eqtrid 2783 |
1
⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ ∪ 𝐴) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) |