MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem11 Structured version   Visualization version   GIF version

Theorem kmlem11 10114
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem11 (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
Distinct variable groups:   𝑥,𝑧,𝑢,𝑡   𝑧,𝐴
Allowed substitution hints:   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem11
StepHypRef Expression
1 kmlem9.1 . . . . . 6 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
21unieqi 4883 . . . . 5 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
3 vex 3451 . . . . . . 7 𝑡 ∈ V
43difexi 5285 . . . . . 6 (𝑡 (𝑥 ∖ {𝑡})) ∈ V
54dfiun2 4997 . . . . 5 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})) = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
62, 5eqtr4i 2755 . . . 4 𝐴 = 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡}))
76ineq2i 4180 . . 3 (𝑧 𝐴) = (𝑧 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})))
8 iunin2 5035 . . 3 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 𝑡𝑥 (𝑡 (𝑥 ∖ {𝑡})))
97, 8eqtr4i 2755 . 2 (𝑧 𝐴) = 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))
10 undif2 4440 . . . . . 6 ({𝑧} ∪ (𝑥 ∖ {𝑧})) = ({𝑧} ∪ 𝑥)
11 snssi 4772 . . . . . . 7 (𝑧𝑥 → {𝑧} ⊆ 𝑥)
12 ssequn1 4149 . . . . . . 7 ({𝑧} ⊆ 𝑥 ↔ ({𝑧} ∪ 𝑥) = 𝑥)
1311, 12sylib 218 . . . . . 6 (𝑧𝑥 → ({𝑧} ∪ 𝑥) = 𝑥)
1410, 13eqtr2id 2777 . . . . 5 (𝑧𝑥𝑥 = ({𝑧} ∪ (𝑥 ∖ {𝑧})))
1514iuneq1d 4983 . . . 4 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
16 iunxun 5058 . . . . . 6 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ( 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
17 vex 3451 . . . . . . . 8 𝑧 ∈ V
18 difeq1 4082 . . . . . . . . . 10 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑡})))
19 sneq 4599 . . . . . . . . . . . . 13 (𝑡 = 𝑧 → {𝑡} = {𝑧})
2019difeq2d 4089 . . . . . . . . . . . 12 (𝑡 = 𝑧 → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
2120unieqd 4884 . . . . . . . . . . 11 (𝑡 = 𝑧 (𝑥 ∖ {𝑡}) = (𝑥 ∖ {𝑧}))
2221difeq2d 4089 . . . . . . . . . 10 (𝑡 = 𝑧 → (𝑧 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
2318, 22eqtrd 2764 . . . . . . . . 9 (𝑡 = 𝑧 → (𝑡 (𝑥 ∖ {𝑡})) = (𝑧 (𝑥 ∖ {𝑧})))
2423ineq2d 4183 . . . . . . . 8 (𝑡 = 𝑧 → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))))
2517, 24iunxsn 5055 . . . . . . 7 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧})))
2625uneq1i 4127 . . . . . 6 ( 𝑡 ∈ {𝑧} (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
2716, 26eqtri 2752 . . . . 5 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))))
28 eldifsni 4754 . . . . . . . . . 10 (𝑡 ∈ (𝑥 ∖ {𝑧}) → 𝑡𝑧)
29 incom 4172 . . . . . . . . . . . 12 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑧)
30 kmlem4 10107 . . . . . . . . . . . 12 ((𝑧𝑥𝑡𝑧) → ((𝑡 (𝑥 ∖ {𝑡})) ∩ 𝑧) = ∅)
3129, 30eqtrid 2776 . . . . . . . . . . 11 ((𝑧𝑥𝑡𝑧) → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
3231ex 412 . . . . . . . . . 10 (𝑧𝑥 → (𝑡𝑧 → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅))
3328, 32syl5 34 . . . . . . . . 9 (𝑧𝑥 → (𝑡 ∈ (𝑥 ∖ {𝑧}) → (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅))
3433ralrimiv 3124 . . . . . . . 8 (𝑧𝑥 → ∀𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
35 iuneq2 4975 . . . . . . . 8 (∀𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅ → 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ (𝑥 ∖ {𝑧})∅)
3634, 35syl 17 . . . . . . 7 (𝑧𝑥 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = 𝑡 ∈ (𝑥 ∖ {𝑧})∅)
37 iun0 5026 . . . . . . 7 𝑡 ∈ (𝑥 ∖ {𝑧})∅ = ∅
3836, 37eqtrdi 2780 . . . . . 6 (𝑧𝑥 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ∅)
3938uneq2d 4131 . . . . 5 (𝑧𝑥 → ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ 𝑡 ∈ (𝑥 ∖ {𝑧})(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡})))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
4027, 39eqtrid 2776 . . . 4 (𝑧𝑥 𝑡 ∈ ({𝑧} ∪ (𝑥 ∖ {𝑧}))(𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
4115, 40eqtrd 2764 . . 3 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅))
42 un0 4357 . . . 4 ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧})))
43 indif 4243 . . . 4 (𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) = (𝑧 (𝑥 ∖ {𝑧}))
4442, 43eqtri 2752 . . 3 ((𝑧 ∩ (𝑧 (𝑥 ∖ {𝑧}))) ∪ ∅) = (𝑧 (𝑥 ∖ {𝑧}))
4541, 44eqtrdi 2780 . 2 (𝑧𝑥 𝑡𝑥 (𝑧 ∩ (𝑡 (𝑥 ∖ {𝑡}))) = (𝑧 (𝑥 ∖ {𝑧})))
469, 45eqtrid 2776 1 (𝑧𝑥 → (𝑧 𝐴) = (𝑧 (𝑥 ∖ {𝑧})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589   cuni 4871   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-sn 4590  df-uni 4872  df-iun 4957
This theorem is referenced by:  kmlem12  10115
  Copyright terms: Public domain W3C validator