Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefvfmla1 Structured version   Visualization version   GIF version

Theorem satefvfmla1 35263
Description: The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
satefvfmla1 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
Distinct variable groups:   𝐼,𝑎   𝐽,𝑎   𝐾,𝑎   𝐿,𝑎   𝑀,𝑎   𝑉,𝑎
Allowed substitution hint:   𝑋(𝑎)

Proof of Theorem satefvfmla1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 satfv1fvfmla1.x . . . . . 6 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
21ovexi 7447 . . . . 5 𝑋 ∈ V
32jctr 523 . . . 4 (𝑀𝑉 → (𝑀𝑉𝑋 ∈ V))
433ad2ant1 1130 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉𝑋 ∈ V))
5 satefv 35252 . . 3 ((𝑀𝑉𝑋 ∈ V) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
64, 5syl 17 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
7 sqxpexg 7752 . . . . . . . 8 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
8 inex2g 5315 . . . . . . . 8 ((𝑀 × 𝑀) ∈ V → ( E ∩ (𝑀 × 𝑀)) ∈ V)
97, 8syl 17 . . . . . . 7 (𝑀𝑉 → ( E ∩ (𝑀 × 𝑀)) ∈ V)
109ancli 547 . . . . . 6 (𝑀𝑉 → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
11103ad2ant1 1130 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
12 satom 35194 . . . . 5 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1311, 12syl 17 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1413fveq1d 6892 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋))
15 satfun 35249 . . . . . . 7 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1611, 15syl 17 . . . . . 6 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1716ffund 6721 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1813eqcomd 2732 . . . . . 6 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1918funeqd 6570 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)))
2017, 19mpbird 256 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
21 1onn 8659 . . . . 5 1o ∈ ω
2221a1i 11 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 1o ∈ ω)
2312goelgoanfmla1 35262 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
24233adant1 1127 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
2521a1i 11 . . . . . . 7 (𝑀𝑉 → 1o ∈ ω)
26 satfdmfmla 35238 . . . . . . 7 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ 1o ∈ ω) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
279, 25, 26mpd3an23 1460 . . . . . 6 (𝑀𝑉 → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
28273ad2ant1 1130 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
2924, 28eleqtrrd 2829 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o))
30 eqid 2726 . . . . 5 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)
3130fviunfun 7947 . . . 4 ((Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ∧ 1o ∈ ω ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
3220, 22, 29, 31syl3anc 1368 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
3314, 32eqtrd 2766 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
341satfv1fvfmla1 35261 . . . 4 (((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))})
3510, 34syl3an1 1160 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))})
36 brin 5195 . . . . . . 7 ((𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ ((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽)))
37 elmapi 8867 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑀m ω) → 𝑎:ω⟶𝑀)
38 ffvelcdm 7084 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐼 ∈ ω) → (𝑎𝐼) ∈ 𝑀)
3938ex 411 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐼 ∈ ω → (𝑎𝐼) ∈ 𝑀))
4037, 39syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐼 ∈ ω → (𝑎𝐼) ∈ 𝑀))
41 ffvelcdm 7084 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐽 ∈ ω) → (𝑎𝐽) ∈ 𝑀)
4241ex 411 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐽 ∈ ω → (𝑎𝐽) ∈ 𝑀))
4337, 42syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐽 ∈ ω → (𝑎𝐽) ∈ 𝑀))
4440, 43anim12d 607 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑀m ω) → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
4544com12 32 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
46453ad2ant2 1131 . . . . . . . . . . 11 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
4746imp 405 . . . . . . . . . 10 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀))
48 brxp 5721 . . . . . . . . . 10 ((𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽) ↔ ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀))
4947, 48sylibr 233 . . . . . . . . 9 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽))
5049biantrud 530 . . . . . . . 8 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼) E (𝑎𝐽) ↔ ((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽))))
51 fvex 6903 . . . . . . . . 9 (𝑎𝐽) ∈ V
5251epeli 5578 . . . . . . . 8 ((𝑎𝐼) E (𝑎𝐽) ↔ (𝑎𝐼) ∈ (𝑎𝐽))
5350, 52bitr3di 285 . . . . . . 7 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽)) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
5436, 53bitrid 282 . . . . . 6 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
5554notbid 317 . . . . 5 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
56 brin 5195 . . . . . . 7 ((𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ ((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿)))
57 ffvelcdm 7084 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐾 ∈ ω) → (𝑎𝐾) ∈ 𝑀)
5857ex 411 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐾 ∈ ω → (𝑎𝐾) ∈ 𝑀))
5937, 58syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐾 ∈ ω → (𝑎𝐾) ∈ 𝑀))
60 ffvelcdm 7084 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐿 ∈ ω) → (𝑎𝐿) ∈ 𝑀)
6160ex 411 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐿 ∈ ω → (𝑎𝐿) ∈ 𝑀))
6237, 61syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐿 ∈ ω → (𝑎𝐿) ∈ 𝑀))
6359, 62anim12d 607 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑀m ω) → ((𝐾 ∈ ω ∧ 𝐿 ∈ ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
6463com12 32 . . . . . . . . . . . 12 ((𝐾 ∈ ω ∧ 𝐿 ∈ ω) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
65643ad2ant3 1132 . . . . . . . . . . 11 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
6665imp 405 . . . . . . . . . 10 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀))
67 brxp 5721 . . . . . . . . . 10 ((𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿) ↔ ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀))
6866, 67sylibr 233 . . . . . . . . 9 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿))
6968biantrud 530 . . . . . . . 8 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾) E (𝑎𝐿) ↔ ((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿))))
70 fvex 6903 . . . . . . . . 9 (𝑎𝐿) ∈ V
7170epeli 5578 . . . . . . . 8 ((𝑎𝐾) E (𝑎𝐿) ↔ (𝑎𝐾) ∈ (𝑎𝐿))
7269, 71bitr3di 285 . . . . . . 7 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿)) ↔ (𝑎𝐾) ∈ (𝑎𝐿)))
7356, 72bitrid 282 . . . . . 6 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ (𝑎𝐾) ∈ (𝑎𝐿)))
7473notbid 317 . . . . 5 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ ¬ (𝑎𝐾) ∈ (𝑎𝐿)))
7555, 74orbi12d 916 . . . 4 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿)) ↔ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))))
7675rabbidva 3426 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
7735, 76eqtrd 2766 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
786, 33, 773eqtrd 2770 1 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  cin 3945  𝒫 cpw 4597   ciun 4993   class class class wbr 5143   E cep 5575   × cxp 5670  dom cdm 5672  Fun wfun 6537  wf 6539  cfv 6543  (class class class)co 7413  ωcom 7865  1oc1o 8478  m cmap 8844  𝑔cgoe 35171  𝑔cgna 35172   Sat csat 35174  Fmlacfmla 35175   Sat csate 35176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-inf2 9674  ax-ac2 10494
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-card 9972  df-ac 10149  df-goel 35178  df-gona 35179  df-goal 35180  df-sat 35181  df-sate 35182  df-fmla 35183
This theorem is referenced by:  elnanelprv  35267
  Copyright terms: Public domain W3C validator