Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefvfmla1 Structured version   Visualization version   GIF version

Theorem satefvfmla1 33387
Description: The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
satefvfmla1 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
Distinct variable groups:   𝐼,𝑎   𝐽,𝑎   𝐾,𝑎   𝐿,𝑎   𝑀,𝑎   𝑉,𝑎
Allowed substitution hint:   𝑋(𝑎)

Proof of Theorem satefvfmla1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 satfv1fvfmla1.x . . . . . 6 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
21ovexi 7309 . . . . 5 𝑋 ∈ V
32jctr 525 . . . 4 (𝑀𝑉 → (𝑀𝑉𝑋 ∈ V))
433ad2ant1 1132 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉𝑋 ∈ V))
5 satefv 33376 . . 3 ((𝑀𝑉𝑋 ∈ V) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
64, 5syl 17 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
7 sqxpexg 7605 . . . . . . . 8 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
8 inex2g 5244 . . . . . . . 8 ((𝑀 × 𝑀) ∈ V → ( E ∩ (𝑀 × 𝑀)) ∈ V)
97, 8syl 17 . . . . . . 7 (𝑀𝑉 → ( E ∩ (𝑀 × 𝑀)) ∈ V)
109ancli 549 . . . . . 6 (𝑀𝑉 → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
11103ad2ant1 1132 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
12 satom 33318 . . . . 5 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1311, 12syl 17 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1413fveq1d 6776 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋))
15 satfun 33373 . . . . . . 7 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1611, 15syl 17 . . . . . 6 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1716ffund 6604 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1813eqcomd 2744 . . . . . 6 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1918funeqd 6456 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)))
2017, 19mpbird 256 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
21 1onn 8470 . . . . 5 1o ∈ ω
2221a1i 11 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 1o ∈ ω)
2312goelgoanfmla1 33386 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
24233adant1 1129 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
2521a1i 11 . . . . . . 7 (𝑀𝑉 → 1o ∈ ω)
26 satfdmfmla 33362 . . . . . . 7 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ 1o ∈ ω) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
279, 25, 26mpd3an23 1462 . . . . . 6 (𝑀𝑉 → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
28273ad2ant1 1132 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
2924, 28eleqtrrd 2842 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o))
30 eqid 2738 . . . . 5 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)
3130fviunfun 7787 . . . 4 ((Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ∧ 1o ∈ ω ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
3220, 22, 29, 31syl3anc 1370 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
3314, 32eqtrd 2778 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
341satfv1fvfmla1 33385 . . . 4 (((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))})
3510, 34syl3an1 1162 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))})
36 brin 5126 . . . . . . 7 ((𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ ((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽)))
37 elmapi 8637 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑀m ω) → 𝑎:ω⟶𝑀)
38 ffvelrn 6959 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐼 ∈ ω) → (𝑎𝐼) ∈ 𝑀)
3938ex 413 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐼 ∈ ω → (𝑎𝐼) ∈ 𝑀))
4037, 39syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐼 ∈ ω → (𝑎𝐼) ∈ 𝑀))
41 ffvelrn 6959 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐽 ∈ ω) → (𝑎𝐽) ∈ 𝑀)
4241ex 413 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐽 ∈ ω → (𝑎𝐽) ∈ 𝑀))
4337, 42syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐽 ∈ ω → (𝑎𝐽) ∈ 𝑀))
4440, 43anim12d 609 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑀m ω) → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
4544com12 32 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
46453ad2ant2 1133 . . . . . . . . . . 11 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
4746imp 407 . . . . . . . . . 10 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀))
48 brxp 5636 . . . . . . . . . 10 ((𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽) ↔ ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀))
4947, 48sylibr 233 . . . . . . . . 9 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽))
5049biantrud 532 . . . . . . . 8 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼) E (𝑎𝐽) ↔ ((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽))))
51 fvex 6787 . . . . . . . . 9 (𝑎𝐽) ∈ V
5251epeli 5497 . . . . . . . 8 ((𝑎𝐼) E (𝑎𝐽) ↔ (𝑎𝐼) ∈ (𝑎𝐽))
5350, 52bitr3di 286 . . . . . . 7 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽)) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
5436, 53syl5bb 283 . . . . . 6 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
5554notbid 318 . . . . 5 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
56 brin 5126 . . . . . . 7 ((𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ ((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿)))
57 ffvelrn 6959 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐾 ∈ ω) → (𝑎𝐾) ∈ 𝑀)
5857ex 413 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐾 ∈ ω → (𝑎𝐾) ∈ 𝑀))
5937, 58syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐾 ∈ ω → (𝑎𝐾) ∈ 𝑀))
60 ffvelrn 6959 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐿 ∈ ω) → (𝑎𝐿) ∈ 𝑀)
6160ex 413 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐿 ∈ ω → (𝑎𝐿) ∈ 𝑀))
6237, 61syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐿 ∈ ω → (𝑎𝐿) ∈ 𝑀))
6359, 62anim12d 609 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑀m ω) → ((𝐾 ∈ ω ∧ 𝐿 ∈ ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
6463com12 32 . . . . . . . . . . . 12 ((𝐾 ∈ ω ∧ 𝐿 ∈ ω) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
65643ad2ant3 1134 . . . . . . . . . . 11 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
6665imp 407 . . . . . . . . . 10 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀))
67 brxp 5636 . . . . . . . . . 10 ((𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿) ↔ ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀))
6866, 67sylibr 233 . . . . . . . . 9 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿))
6968biantrud 532 . . . . . . . 8 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾) E (𝑎𝐿) ↔ ((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿))))
70 fvex 6787 . . . . . . . . 9 (𝑎𝐿) ∈ V
7170epeli 5497 . . . . . . . 8 ((𝑎𝐾) E (𝑎𝐿) ↔ (𝑎𝐾) ∈ (𝑎𝐿))
7269, 71bitr3di 286 . . . . . . 7 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿)) ↔ (𝑎𝐾) ∈ (𝑎𝐿)))
7356, 72syl5bb 283 . . . . . 6 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ (𝑎𝐾) ∈ (𝑎𝐿)))
7473notbid 318 . . . . 5 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ ¬ (𝑎𝐾) ∈ (𝑎𝐿)))
7555, 74orbi12d 916 . . . 4 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿)) ↔ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))))
7675rabbidva 3413 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
7735, 76eqtrd 2778 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
786, 33, 773eqtrd 2782 1 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cin 3886  𝒫 cpw 4533   ciun 4924   class class class wbr 5074   E cep 5494   × cxp 5587  dom cdm 5589  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  1oc1o 8290  m cmap 8615  𝑔cgoe 33295  𝑔cgna 33296   Sat csat 33298  Fmlacfmla 33299   Sat csate 33300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-ac 9872  df-goel 33302  df-gona 33303  df-goal 33304  df-sat 33305  df-sate 33306  df-fmla 33307
This theorem is referenced by:  elnanelprv  33391
  Copyright terms: Public domain W3C validator