Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satefvfmla1 Structured version   Visualization version   GIF version

Theorem satefvfmla1 35419
Description: The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023.)
Hypothesis
Ref Expression
satfv1fvfmla1.x 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
Assertion
Ref Expression
satefvfmla1 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
Distinct variable groups:   𝐼,𝑎   𝐽,𝑎   𝐾,𝑎   𝐿,𝑎   𝑀,𝑎   𝑉,𝑎
Allowed substitution hint:   𝑋(𝑎)

Proof of Theorem satefvfmla1
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 satfv1fvfmla1.x . . . . . 6 𝑋 = ((𝐼𝑔𝐽)⊼𝑔(𝐾𝑔𝐿))
21ovexi 7424 . . . . 5 𝑋 ∈ V
32jctr 524 . . . 4 (𝑀𝑉 → (𝑀𝑉𝑋 ∈ V))
433ad2ant1 1133 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉𝑋 ∈ V))
5 satefv 35408 . . 3 ((𝑀𝑉𝑋 ∈ V) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
64, 5syl 17 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋))
7 sqxpexg 7734 . . . . . . . 8 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
8 inex2g 5278 . . . . . . . 8 ((𝑀 × 𝑀) ∈ V → ( E ∩ (𝑀 × 𝑀)) ∈ V)
97, 8syl 17 . . . . . . 7 (𝑀𝑉 → ( E ∩ (𝑀 × 𝑀)) ∈ V)
109ancli 548 . . . . . 6 (𝑀𝑉 → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
11103ad2ant1 1133 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
12 satom 35350 . . . . 5 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1311, 12syl 17 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
1413fveq1d 6863 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋))
15 satfun 35405 . . . . . . 7 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1611, 15syl 17 . . . . . 6 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
1716ffund 6695 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1813eqcomd 2736 . . . . . 6 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω))
1918funeqd 6541 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ↔ Fun ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)))
2017, 19mpbird 257 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖))
21 1onn 8607 . . . . 5 1o ∈ ω
2221a1i 11 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 1o ∈ ω)
2312goelgoanfmla1 35418 . . . . . 6 (((𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
24233adant1 1130 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ (Fmla‘1o))
2521a1i 11 . . . . . . 7 (𝑀𝑉 → 1o ∈ ω)
26 satfdmfmla 35394 . . . . . . 7 ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V ∧ 1o ∈ ω) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
279, 25, 26mpd3an23 1465 . . . . . 6 (𝑀𝑉 → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
28273ad2ant1 1133 . . . . 5 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o) = (Fmla‘1o))
2924, 28eleqtrrd 2832 . . . 4 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o))
30 eqid 2730 . . . . 5 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) = 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)
3130fviunfun 7926 . . . 4 ((Fun 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖) ∧ 1o ∈ ω ∧ 𝑋 ∈ dom ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
3220, 22, 29, 31syl3anc 1373 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → ( 𝑖 ∈ ω ((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘𝑖)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
3314, 32eqtrd 2765 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑋) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋))
341satfv1fvfmla1 35417 . . . 4 (((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))})
3510, 34syl3an1 1163 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))})
36 brin 5162 . . . . . . 7 ((𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ ((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽)))
37 elmapi 8825 . . . . . . . . . . . . . . 15 (𝑎 ∈ (𝑀m ω) → 𝑎:ω⟶𝑀)
38 ffvelcdm 7056 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐼 ∈ ω) → (𝑎𝐼) ∈ 𝑀)
3938ex 412 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐼 ∈ ω → (𝑎𝐼) ∈ 𝑀))
4037, 39syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐼 ∈ ω → (𝑎𝐼) ∈ 𝑀))
41 ffvelcdm 7056 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐽 ∈ ω) → (𝑎𝐽) ∈ 𝑀)
4241ex 412 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐽 ∈ ω → (𝑎𝐽) ∈ 𝑀))
4337, 42syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐽 ∈ ω → (𝑎𝐽) ∈ 𝑀))
4440, 43anim12d 609 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑀m ω) → ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
4544com12 32 . . . . . . . . . . . 12 ((𝐼 ∈ ω ∧ 𝐽 ∈ ω) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
46453ad2ant2 1134 . . . . . . . . . . 11 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀)))
4746imp 406 . . . . . . . . . 10 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀))
48 brxp 5690 . . . . . . . . . 10 ((𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽) ↔ ((𝑎𝐼) ∈ 𝑀 ∧ (𝑎𝐽) ∈ 𝑀))
4947, 48sylibr 234 . . . . . . . . 9 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽))
5049biantrud 531 . . . . . . . 8 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼) E (𝑎𝐽) ↔ ((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽))))
51 fvex 6874 . . . . . . . . 9 (𝑎𝐽) ∈ V
5251epeli 5543 . . . . . . . 8 ((𝑎𝐼) E (𝑎𝐽) ↔ (𝑎𝐼) ∈ (𝑎𝐽))
5350, 52bitr3di 286 . . . . . . 7 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (((𝑎𝐼) E (𝑎𝐽) ∧ (𝑎𝐼)(𝑀 × 𝑀)(𝑎𝐽)) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
5436, 53bitrid 283 . . . . . 6 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ (𝑎𝐼) ∈ (𝑎𝐽)))
5554notbid 318 . . . . 5 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ↔ ¬ (𝑎𝐼) ∈ (𝑎𝐽)))
56 brin 5162 . . . . . . 7 ((𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ ((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿)))
57 ffvelcdm 7056 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐾 ∈ ω) → (𝑎𝐾) ∈ 𝑀)
5857ex 412 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐾 ∈ ω → (𝑎𝐾) ∈ 𝑀))
5937, 58syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐾 ∈ ω → (𝑎𝐾) ∈ 𝑀))
60 ffvelcdm 7056 . . . . . . . . . . . . . . . 16 ((𝑎:ω⟶𝑀𝐿 ∈ ω) → (𝑎𝐿) ∈ 𝑀)
6160ex 412 . . . . . . . . . . . . . . 15 (𝑎:ω⟶𝑀 → (𝐿 ∈ ω → (𝑎𝐿) ∈ 𝑀))
6237, 61syl 17 . . . . . . . . . . . . . 14 (𝑎 ∈ (𝑀m ω) → (𝐿 ∈ ω → (𝑎𝐿) ∈ 𝑀))
6359, 62anim12d 609 . . . . . . . . . . . . 13 (𝑎 ∈ (𝑀m ω) → ((𝐾 ∈ ω ∧ 𝐿 ∈ ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
6463com12 32 . . . . . . . . . . . 12 ((𝐾 ∈ ω ∧ 𝐿 ∈ ω) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
65643ad2ant3 1135 . . . . . . . . . . 11 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑎 ∈ (𝑀m ω) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀)))
6665imp 406 . . . . . . . . . 10 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀))
67 brxp 5690 . . . . . . . . . 10 ((𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿) ↔ ((𝑎𝐾) ∈ 𝑀 ∧ (𝑎𝐿) ∈ 𝑀))
6866, 67sylibr 234 . . . . . . . . 9 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿))
6968biantrud 531 . . . . . . . 8 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾) E (𝑎𝐿) ↔ ((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿))))
70 fvex 6874 . . . . . . . . 9 (𝑎𝐿) ∈ V
7170epeli 5543 . . . . . . . 8 ((𝑎𝐾) E (𝑎𝐿) ↔ (𝑎𝐾) ∈ (𝑎𝐿))
7269, 71bitr3di 286 . . . . . . 7 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (((𝑎𝐾) E (𝑎𝐿) ∧ (𝑎𝐾)(𝑀 × 𝑀)(𝑎𝐿)) ↔ (𝑎𝐾) ∈ (𝑎𝐿)))
7356, 72bitrid 283 . . . . . 6 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ (𝑎𝐾) ∈ (𝑎𝐿)))
7473notbid 318 . . . . 5 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → (¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿) ↔ ¬ (𝑎𝐾) ∈ (𝑎𝐿)))
7555, 74orbi12d 918 . . . 4 (((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) ∧ 𝑎 ∈ (𝑀m ω)) → ((¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿)) ↔ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))))
7675rabbidva 3415 . . 3 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼)( E ∩ (𝑀 × 𝑀))(𝑎𝐽) ∨ ¬ (𝑎𝐾)( E ∩ (𝑀 × 𝑀))(𝑎𝐿))} = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
7735, 76eqtrd 2765 . 2 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘1o)‘𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
786, 33, 773eqtrd 2769 1 ((𝑀𝑉 ∧ (𝐼 ∈ ω ∧ 𝐽 ∈ ω) ∧ (𝐾 ∈ ω ∧ 𝐿 ∈ ω)) → (𝑀 Sat 𝑋) = {𝑎 ∈ (𝑀m ω) ∣ (¬ (𝑎𝐼) ∈ (𝑎𝐽) ∨ ¬ (𝑎𝐾) ∈ (𝑎𝐿))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  cin 3916  𝒫 cpw 4566   ciun 4958   class class class wbr 5110   E cep 5540   × cxp 5639  dom cdm 5641  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  ωcom 7845  1oc1o 8430  m cmap 8802  𝑔cgoe 35327  𝑔cgna 35328   Sat csat 35330  Fmlacfmla 35331   Sat csate 35332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-ac 10076  df-goel 35334  df-gona 35335  df-goal 35336  df-sat 35337  df-sate 35338  df-fmla 35339
This theorem is referenced by:  elnanelprv  35423
  Copyright terms: Public domain W3C validator