| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5246 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3929 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 5268 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | eleq1 2816 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: ssexi 5272 ssexg 5273 intex 5294 moabex 5414 naddunif 8635 ixpiunwdom 9520 omex 9575 tcss 9676 bndrank 9773 scottex 9817 aceq3lem 10052 cfslb 10198 dcomex 10379 axdc2lem 10380 grothpw 10758 grothpwex 10759 grothomex 10761 elnp 10919 negfi 12111 limsuple 15422 limsuplt 15423 limsupbnd1 15426 o1add2 15568 o1mul2 15569 o1sub2 15570 o1dif 15574 caucvgrlem 15617 fsumo1 15756 lcmfval 16569 lcmf0val 16570 unbenlem 16857 ressbas2 17186 prdsval 17396 prdsbas 17398 rescbas 17773 reschom 17774 rescco 17776 acsmapd 18497 issstrmgm 18564 issubmgm2 18614 issubmnd 18672 eqgfval 19092 dfod2 19480 ablfac1b 19988 islinds2 21757 pmatcollpw3lem 22705 2basgen 22912 prdstopn 23550 ressust 24186 rectbntr0 24756 elcncf 24817 cncfcnvcn 24854 cmssmscld 25285 cmsss 25286 ovolctb2 25428 limcfval 25808 ellimc2 25813 limcflf 25817 limcres 25822 limcun 25831 dvfval 25833 lhop2 25955 taylfval 26301 ulmval 26324 xrlimcnp 26913 axtgcont1 28450 fpwrelmap 32708 ressnm 32938 ressprs 32940 ordtrestNEW 33906 ddeval1 34219 ddeval0 34220 carsgclctunlem3 34306 bnj849 34910 msrval 35520 mclsval 35545 brsset 35872 isfne4 36323 refssfne 36341 topjoin 36348 bj-snglex 36956 mblfinlem3 37648 filbcmb 37729 cnpwstotbnd 37786 ismtyval 37789 ispsubsp 39734 ispsubclN 39926 isnumbasgrplem2 43088 rtrclex 43601 brmptiunrelexpd 43667 iunrelexp0 43686 mulcncff 45863 subcncff 45873 addcncff 45877 cncfuni 45879 divcncff 45884 etransclem1 46228 etransclem4 46231 etransclem13 46240 isvonmbl 46631 isubgriedg 47858 isubgrvtx 47862 uhgrimisgrgric 47926 linccl 48398 ellcoellss 48419 elbigolo1 48541 |
| Copyright terms: Public domain | W3C validator |