Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5227 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3909 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | inex2 5246 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | eleq1 2828 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
5 | 3, 4 | mpbii 232 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ∩ cin 3891 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 |
This theorem is referenced by: ssexi 5250 ssexg 5251 intex 5265 moabex 5378 ixpiunwdom 9327 omex 9379 tcss 9502 bndrank 9600 scottex 9644 aceq3lem 9877 cfslb 10023 dcomex 10204 axdc2lem 10205 grothpw 10583 grothpwex 10584 grothomex 10586 elnp 10744 negfi 11924 hashfacenOLD 14165 limsuple 15185 limsuplt 15186 limsupbnd1 15189 o1add2 15331 o1mul2 15332 o1sub2 15333 o1dif 15337 caucvgrlem 15382 fsumo1 15522 lcmfval 16324 lcmf0val 16325 unbenlem 16607 ressbas2 16947 prdsval 17164 prdsbas 17166 rescbas 17539 rescbasOLD 17540 reschom 17541 rescco 17543 resccoOLD 17544 acsmapd 18270 issstrmgm 18335 issubmnd 18410 eqgfval 18802 dfod2 19169 ablfac1b 19671 islinds2 21018 pmatcollpw3lem 21930 2basgen 22138 prdstopn 22777 ressust 23413 rectbntr0 23993 elcncf 24050 cncfcnvcn 24086 cmssmscld 24512 cmsss 24513 ovolctb2 24654 limcfval 25034 ellimc2 25039 limcflf 25043 limcres 25048 limcun 25057 dvfval 25059 lhop2 25177 taylfval 25516 ulmval 25537 xrlimcnp 26116 axtgcont1 26827 fpwrelmap 31064 ressnm 31232 ressprs 31237 ordtrestNEW 31867 ddeval1 32198 ddeval0 32199 carsgclctunlem3 32283 bnj849 32901 msrval 33496 mclsval 33521 brsset 34187 isfne4 34525 refssfne 34543 topjoin 34550 bj-snglex 35159 mblfinlem3 35812 filbcmb 35894 cnpwstotbnd 35951 ismtyval 35954 ispsubsp 37755 ispsubclN 37947 isnumbasgrplem2 40926 rtrclex 41195 brmptiunrelexpd 41261 iunrelexp0 41280 mulcncff 43382 subcncff 43392 addcncff 43396 cncfuni 43398 divcncff 43403 etransclem1 43747 etransclem4 43750 etransclem13 43759 isvonmbl 44147 issubmgm2 45313 linccl 45724 ellcoellss 45745 elbigolo1 45872 |
Copyright terms: Public domain | W3C validator |