Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5218 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3900 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | inex2 5237 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | eleq1 2826 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
5 | 3, 4 | mpbii 232 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssexi 5241 ssexg 5242 intex 5256 moabex 5368 ixpiunwdom 9279 omex 9331 tcss 9433 bndrank 9530 scottex 9574 aceq3lem 9807 cfslb 9953 dcomex 10134 axdc2lem 10135 grothpw 10513 grothpwex 10514 grothomex 10516 elnp 10674 negfi 11854 hashfacenOLD 14095 limsuple 15115 limsuplt 15116 limsupbnd1 15119 o1add2 15261 o1mul2 15262 o1sub2 15263 o1dif 15267 caucvgrlem 15312 fsumo1 15452 lcmfval 16254 lcmf0val 16255 unbenlem 16537 ressbas2 16875 prdsval 17083 prdsbas 17085 rescbas 17458 rescbasOLD 17459 reschom 17460 rescco 17462 resccoOLD 17463 acsmapd 18187 issstrmgm 18252 issubmnd 18327 eqgfval 18719 dfod2 19086 ablfac1b 19588 islinds2 20930 pmatcollpw3lem 21840 2basgen 22048 prdstopn 22687 ressust 23323 rectbntr0 23901 elcncf 23958 cncfcnvcn 23994 cmssmscld 24419 cmsss 24420 ovolctb2 24561 limcfval 24941 ellimc2 24946 limcflf 24950 limcres 24955 limcun 24964 dvfval 24966 lhop2 25084 taylfval 25423 ulmval 25444 xrlimcnp 26023 axtgcont1 26733 fpwrelmap 30970 ressnm 31138 ressprs 31143 ordtrestNEW 31773 ddeval1 32102 ddeval0 32103 carsgclctunlem3 32187 bnj849 32805 msrval 33400 mclsval 33425 brsset 34118 isfne4 34456 refssfne 34474 topjoin 34481 bj-snglex 35090 mblfinlem3 35743 filbcmb 35825 cnpwstotbnd 35882 ismtyval 35885 ispsubsp 37686 ispsubclN 37878 isnumbasgrplem2 40845 rtrclex 41114 brmptiunrelexpd 41180 iunrelexp0 41199 mulcncff 43301 subcncff 43311 addcncff 43315 cncfuni 43317 divcncff 43322 etransclem1 43666 etransclem4 43669 etransclem13 43678 isvonmbl 44066 issubmgm2 45232 linccl 45643 ellcoellss 45664 elbigolo1 45791 |
Copyright terms: Public domain | W3C validator |