| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5232 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3915 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 5254 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | eleq1 2819 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 df-ss 3914 |
| This theorem is referenced by: ssexi 5258 ssexg 5259 intex 5280 moabex 5397 naddunif 8608 ixpiunwdom 9476 omex 9533 tcss 9632 bndrank 9734 scottex 9778 aceq3lem 10011 cfslb 10157 dcomex 10338 axdc2lem 10339 grothpw 10717 grothpwex 10718 grothomex 10720 elnp 10878 negfi 12071 limsuple 15385 limsuplt 15386 limsupbnd1 15389 o1add2 15531 o1mul2 15532 o1sub2 15533 o1dif 15537 caucvgrlem 15580 fsumo1 15719 lcmfval 16532 lcmf0val 16533 unbenlem 16820 ressbas2 17149 prdsval 17359 prdsbas 17361 rescbas 17736 reschom 17737 rescco 17739 acsmapd 18460 issstrmgm 18561 issubmgm2 18611 issubmnd 18669 eqgfval 19088 dfod2 19476 ablfac1b 19984 islinds2 21750 pmatcollpw3lem 22698 2basgen 22905 prdstopn 23543 ressust 24178 rectbntr0 24748 elcncf 24809 cncfcnvcn 24846 cmssmscld 25277 cmsss 25278 ovolctb2 25420 limcfval 25800 ellimc2 25805 limcflf 25809 limcres 25814 limcun 25823 dvfval 25825 lhop2 25947 taylfval 26293 ulmval 26316 xrlimcnp 26905 axtgcont1 28446 fpwrelmap 32716 ressnm 32945 ressprs 32947 ordtrestNEW 33934 ddeval1 34247 ddeval0 34248 carsgclctunlem3 34333 bnj849 34937 msrval 35582 mclsval 35607 brsset 35931 isfne4 36384 refssfne 36402 topjoin 36409 bj-snglex 37017 mblfinlem3 37698 filbcmb 37779 cnpwstotbnd 37836 ismtyval 37839 ispsubsp 39843 ispsubclN 40035 isnumbasgrplem2 43196 rtrclex 43709 brmptiunrelexpd 43775 iunrelexp0 43794 mulcncff 45967 subcncff 45977 addcncff 45981 cncfuni 45983 divcncff 45988 etransclem1 46332 etransclem4 46335 etransclem13 46344 isvonmbl 46735 isubgriedg 47962 isubgrvtx 47966 uhgrimisgrgric 48030 linccl 48514 ellcoellss 48535 elbigolo1 48657 |
| Copyright terms: Public domain | W3C validator |