| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5266 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3944 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 5288 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | eleq1 2822 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: ssexi 5292 ssexg 5293 intex 5314 moabex 5434 naddunif 8703 ixpiunwdom 9602 omex 9655 tcss 9756 bndrank 9853 scottex 9897 aceq3lem 10132 cfslb 10278 dcomex 10459 axdc2lem 10460 grothpw 10838 grothpwex 10839 grothomex 10841 elnp 10999 negfi 12189 limsuple 15492 limsuplt 15493 limsupbnd1 15496 o1add2 15638 o1mul2 15639 o1sub2 15640 o1dif 15644 caucvgrlem 15687 fsumo1 15826 lcmfval 16638 lcmf0val 16639 unbenlem 16926 ressbas2 17257 prdsval 17467 prdsbas 17469 rescbas 17840 reschom 17841 rescco 17843 acsmapd 18562 issstrmgm 18629 issubmgm2 18679 issubmnd 18737 eqgfval 19157 dfod2 19543 ablfac1b 20051 islinds2 21771 pmatcollpw3lem 22719 2basgen 22926 prdstopn 23564 ressust 24200 rectbntr0 24770 elcncf 24831 cncfcnvcn 24868 cmssmscld 25300 cmsss 25301 ovolctb2 25443 limcfval 25823 ellimc2 25828 limcflf 25832 limcres 25837 limcun 25846 dvfval 25848 lhop2 25970 taylfval 26316 ulmval 26339 xrlimcnp 26928 axtgcont1 28393 fpwrelmap 32656 ressnm 32886 ressprs 32890 ordtrestNEW 33898 ddeval1 34211 ddeval0 34212 carsgclctunlem3 34298 bnj849 34902 msrval 35506 mclsval 35531 brsset 35853 isfne4 36304 refssfne 36322 topjoin 36329 bj-snglex 36937 mblfinlem3 37629 filbcmb 37710 cnpwstotbnd 37767 ismtyval 37770 ispsubsp 39710 ispsubclN 39902 isnumbasgrplem2 43075 rtrclex 43588 brmptiunrelexpd 43654 iunrelexp0 43673 mulcncff 45847 subcncff 45857 addcncff 45861 cncfuni 45863 divcncff 45868 etransclem1 46212 etransclem4 46215 etransclem13 46224 isvonmbl 46615 isubgriedg 47824 isubgrvtx 47828 uhgrimisgrgric 47892 linccl 48338 ellcoellss 48359 elbigolo1 48485 |
| Copyright terms: Public domain | W3C validator |