| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5235 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3921 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 5257 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | eleq1 2816 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∩ cin 3902 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-in 3910 df-ss 3920 |
| This theorem is referenced by: ssexi 5261 ssexg 5262 intex 5283 moabex 5402 naddunif 8611 ixpiunwdom 9482 omex 9539 tcss 9640 bndrank 9737 scottex 9781 aceq3lem 10014 cfslb 10160 dcomex 10341 axdc2lem 10342 grothpw 10720 grothpwex 10721 grothomex 10723 elnp 10881 negfi 12074 limsuple 15385 limsuplt 15386 limsupbnd1 15389 o1add2 15531 o1mul2 15532 o1sub2 15533 o1dif 15537 caucvgrlem 15580 fsumo1 15719 lcmfval 16532 lcmf0val 16533 unbenlem 16820 ressbas2 17149 prdsval 17359 prdsbas 17361 rescbas 17736 reschom 17737 rescco 17739 acsmapd 18460 issstrmgm 18527 issubmgm2 18577 issubmnd 18635 eqgfval 19055 dfod2 19443 ablfac1b 19951 islinds2 21720 pmatcollpw3lem 22668 2basgen 22875 prdstopn 23513 ressust 24149 rectbntr0 24719 elcncf 24780 cncfcnvcn 24817 cmssmscld 25248 cmsss 25249 ovolctb2 25391 limcfval 25771 ellimc2 25776 limcflf 25780 limcres 25785 limcun 25794 dvfval 25796 lhop2 25918 taylfval 26264 ulmval 26287 xrlimcnp 26876 axtgcont1 28417 fpwrelmap 32685 ressnm 32915 ressprs 32917 ordtrestNEW 33904 ddeval1 34217 ddeval0 34218 carsgclctunlem3 34304 bnj849 34908 msrval 35531 mclsval 35556 brsset 35883 isfne4 36334 refssfne 36352 topjoin 36359 bj-snglex 36967 mblfinlem3 37659 filbcmb 37740 cnpwstotbnd 37797 ismtyval 37800 ispsubsp 39744 ispsubclN 39936 isnumbasgrplem2 43097 rtrclex 43610 brmptiunrelexpd 43676 iunrelexp0 43695 mulcncff 45871 subcncff 45881 addcncff 45885 cncfuni 45887 divcncff 45892 etransclem1 46236 etransclem4 46239 etransclem13 46248 isvonmbl 46639 isubgriedg 47867 isubgrvtx 47871 uhgrimisgrgric 47935 linccl 48419 ellcoellss 48440 elbigolo1 48562 |
| Copyright terms: Public domain | W3C validator |