| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5246 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3929 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 5268 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | eleq1 2816 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-in 3918 df-ss 3928 |
| This theorem is referenced by: ssexi 5272 ssexg 5273 intex 5294 moabex 5414 naddunif 8634 ixpiunwdom 9519 omex 9574 tcss 9675 bndrank 9772 scottex 9816 aceq3lem 10051 cfslb 10197 dcomex 10378 axdc2lem 10379 grothpw 10757 grothpwex 10758 grothomex 10760 elnp 10918 negfi 12110 limsuple 15421 limsuplt 15422 limsupbnd1 15425 o1add2 15567 o1mul2 15568 o1sub2 15569 o1dif 15573 caucvgrlem 15616 fsumo1 15755 lcmfval 16568 lcmf0val 16569 unbenlem 16856 ressbas2 17185 prdsval 17395 prdsbas 17397 rescbas 17772 reschom 17773 rescco 17775 acsmapd 18496 issstrmgm 18563 issubmgm2 18613 issubmnd 18671 eqgfval 19091 dfod2 19479 ablfac1b 19987 islinds2 21756 pmatcollpw3lem 22704 2basgen 22911 prdstopn 23549 ressust 24185 rectbntr0 24755 elcncf 24816 cncfcnvcn 24853 cmssmscld 25284 cmsss 25285 ovolctb2 25427 limcfval 25807 ellimc2 25812 limcflf 25816 limcres 25821 limcun 25830 dvfval 25832 lhop2 25954 taylfval 26300 ulmval 26323 xrlimcnp 26912 axtgcont1 28449 fpwrelmap 32707 ressnm 32937 ressprs 32939 ordtrestNEW 33905 ddeval1 34218 ddeval0 34219 carsgclctunlem3 34305 bnj849 34909 msrval 35519 mclsval 35544 brsset 35871 isfne4 36322 refssfne 36340 topjoin 36347 bj-snglex 36955 mblfinlem3 37647 filbcmb 37728 cnpwstotbnd 37785 ismtyval 37788 ispsubsp 39733 ispsubclN 39925 isnumbasgrplem2 43087 rtrclex 43600 brmptiunrelexpd 43666 iunrelexp0 43685 mulcncff 45862 subcncff 45872 addcncff 45876 cncfuni 45878 divcncff 45883 etransclem1 46227 etransclem4 46230 etransclem13 46239 isvonmbl 46630 isubgriedg 47857 isubgrvtx 47861 uhgrimisgrgric 47925 linccl 48397 ellcoellss 48418 elbigolo1 48540 |
| Copyright terms: Public domain | W3C validator |