| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5251 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3932 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 5273 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | eleq1 2816 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: ssexi 5277 ssexg 5278 intex 5299 moabex 5419 naddunif 8657 ixpiunwdom 9543 omex 9596 tcss 9697 bndrank 9794 scottex 9838 aceq3lem 10073 cfslb 10219 dcomex 10400 axdc2lem 10401 grothpw 10779 grothpwex 10780 grothomex 10782 elnp 10940 negfi 12132 limsuple 15444 limsuplt 15445 limsupbnd1 15448 o1add2 15590 o1mul2 15591 o1sub2 15592 o1dif 15596 caucvgrlem 15639 fsumo1 15778 lcmfval 16591 lcmf0val 16592 unbenlem 16879 ressbas2 17208 prdsval 17418 prdsbas 17420 rescbas 17791 reschom 17792 rescco 17794 acsmapd 18513 issstrmgm 18580 issubmgm2 18630 issubmnd 18688 eqgfval 19108 dfod2 19494 ablfac1b 20002 islinds2 21722 pmatcollpw3lem 22670 2basgen 22877 prdstopn 23515 ressust 24151 rectbntr0 24721 elcncf 24782 cncfcnvcn 24819 cmssmscld 25250 cmsss 25251 ovolctb2 25393 limcfval 25773 ellimc2 25778 limcflf 25782 limcres 25787 limcun 25796 dvfval 25798 lhop2 25920 taylfval 26266 ulmval 26289 xrlimcnp 26878 axtgcont1 28395 fpwrelmap 32656 ressnm 32886 ressprs 32890 ordtrestNEW 33911 ddeval1 34224 ddeval0 34225 carsgclctunlem3 34311 bnj849 34915 msrval 35525 mclsval 35550 brsset 35877 isfne4 36328 refssfne 36346 topjoin 36353 bj-snglex 36961 mblfinlem3 37653 filbcmb 37734 cnpwstotbnd 37791 ismtyval 37794 ispsubsp 39739 ispsubclN 39931 isnumbasgrplem2 43093 rtrclex 43606 brmptiunrelexpd 43672 iunrelexp0 43691 mulcncff 45868 subcncff 45878 addcncff 45882 cncfuni 45884 divcncff 45889 etransclem1 46233 etransclem4 46236 etransclem13 46245 isvonmbl 46636 isubgriedg 47863 isubgrvtx 47867 uhgrimisgrgric 47931 linccl 48403 ellcoellss 48424 elbigolo1 48546 |
| Copyright terms: Public domain | W3C validator |