Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5223 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3904 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | inex2 5242 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | eleq1 2826 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
5 | 3, 4 | mpbii 232 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssexi 5246 ssexg 5247 intex 5261 moabex 5374 ixpiunwdom 9349 omex 9401 tcss 9502 bndrank 9599 scottex 9643 aceq3lem 9876 cfslb 10022 dcomex 10203 axdc2lem 10204 grothpw 10582 grothpwex 10583 grothomex 10585 elnp 10743 negfi 11924 hashfacenOLD 14167 limsuple 15187 limsuplt 15188 limsupbnd1 15191 o1add2 15333 o1mul2 15334 o1sub2 15335 o1dif 15339 caucvgrlem 15384 fsumo1 15524 lcmfval 16326 lcmf0val 16327 unbenlem 16609 ressbas2 16949 prdsval 17166 prdsbas 17168 rescbas 17541 rescbasOLD 17542 reschom 17543 rescco 17545 resccoOLD 17546 acsmapd 18272 issstrmgm 18337 issubmnd 18412 eqgfval 18804 dfod2 19171 ablfac1b 19673 islinds2 21020 pmatcollpw3lem 21932 2basgen 22140 prdstopn 22779 ressust 23415 rectbntr0 23995 elcncf 24052 cncfcnvcn 24088 cmssmscld 24514 cmsss 24515 ovolctb2 24656 limcfval 25036 ellimc2 25041 limcflf 25045 limcres 25050 limcun 25059 dvfval 25061 lhop2 25179 taylfval 25518 ulmval 25539 xrlimcnp 26118 axtgcont1 26829 fpwrelmap 31068 ressnm 31236 ressprs 31241 ordtrestNEW 31871 ddeval1 32202 ddeval0 32203 carsgclctunlem3 32287 bnj849 32905 msrval 33500 mclsval 33525 brsset 34191 isfne4 34529 refssfne 34547 topjoin 34554 bj-snglex 35163 mblfinlem3 35816 filbcmb 35898 cnpwstotbnd 35955 ismtyval 35958 ispsubsp 37759 ispsubclN 37951 isnumbasgrplem2 40929 rtrclex 41225 brmptiunrelexpd 41291 iunrelexp0 41310 mulcncff 43411 subcncff 43421 addcncff 43425 cncfuni 43427 divcncff 43432 etransclem1 43776 etransclem4 43779 etransclem13 43788 isvonmbl 44176 issubmgm2 45344 linccl 45755 ellcoellss 45776 elbigolo1 45903 |
Copyright terms: Public domain | W3C validator |