![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5301 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3980 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | inex2 5323 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | eleq1 2826 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∩ cin 3961 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-in 3969 df-ss 3979 |
This theorem is referenced by: ssexi 5327 ssexg 5328 intex 5349 moabex 5469 naddunif 8729 ixpiunwdom 9627 omex 9680 tcss 9781 bndrank 9878 scottex 9922 aceq3lem 10157 cfslb 10303 dcomex 10484 axdc2lem 10485 grothpw 10863 grothpwex 10864 grothomex 10866 elnp 11024 negfi 12214 limsuple 15510 limsuplt 15511 limsupbnd1 15514 o1add2 15656 o1mul2 15657 o1sub2 15658 o1dif 15662 caucvgrlem 15705 fsumo1 15844 lcmfval 16654 lcmf0val 16655 unbenlem 16941 ressbas2 17282 prdsval 17501 prdsbas 17503 rescbas 17876 rescbasOLD 17877 reschom 17878 rescco 17880 resccoOLD 17881 acsmapd 18611 issstrmgm 18678 issubmgm2 18728 issubmnd 18786 eqgfval 19206 dfod2 19596 ablfac1b 20104 islinds2 21850 pmatcollpw3lem 22804 2basgen 23012 prdstopn 23651 ressust 24287 rectbntr0 24867 elcncf 24928 cncfcnvcn 24965 cmssmscld 25397 cmsss 25398 ovolctb2 25540 limcfval 25921 ellimc2 25926 limcflf 25930 limcres 25935 limcun 25944 dvfval 25946 lhop2 26068 taylfval 26414 ulmval 26437 xrlimcnp 27025 axtgcont1 28490 fpwrelmap 32750 ressnm 32933 ressprs 32938 ordtrestNEW 33881 ddeval1 34214 ddeval0 34215 carsgclctunlem3 34301 bnj849 34917 msrval 35522 mclsval 35547 brsset 35870 isfne4 36322 refssfne 36340 topjoin 36347 bj-snglex 36955 mblfinlem3 37645 filbcmb 37726 cnpwstotbnd 37783 ismtyval 37786 ispsubsp 39727 ispsubclN 39919 isnumbasgrplem2 43092 rtrclex 43606 brmptiunrelexpd 43672 iunrelexp0 43691 mulcncff 45825 subcncff 45835 addcncff 45839 cncfuni 45841 divcncff 45846 etransclem1 46190 etransclem4 46193 etransclem13 46202 isvonmbl 46593 isubgriedg 47786 isubgrvtx 47790 uhgrimisgrgric 47836 linccl 48259 ellcoellss 48280 elbigolo1 48406 |
Copyright terms: Public domain | W3C validator |