![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version |
Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5317 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
ssex.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3994 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | inex2 5336 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
4 | eleq1 2832 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: ssexi 5340 ssexg 5341 intex 5362 moabex 5479 naddunif 8749 ixpiunwdom 9659 omex 9712 tcss 9813 bndrank 9910 scottex 9954 aceq3lem 10189 cfslb 10335 dcomex 10516 axdc2lem 10517 grothpw 10895 grothpwex 10896 grothomex 10898 elnp 11056 negfi 12244 limsuple 15524 limsuplt 15525 limsupbnd1 15528 o1add2 15670 o1mul2 15671 o1sub2 15672 o1dif 15676 caucvgrlem 15721 fsumo1 15860 lcmfval 16668 lcmf0val 16669 unbenlem 16955 ressbas2 17296 prdsval 17515 prdsbas 17517 rescbas 17890 rescbasOLD 17891 reschom 17892 rescco 17894 resccoOLD 17895 acsmapd 18624 issstrmgm 18691 issubmgm2 18741 issubmnd 18799 eqgfval 19216 dfod2 19606 ablfac1b 20114 islinds2 21856 pmatcollpw3lem 22810 2basgen 23018 prdstopn 23657 ressust 24293 rectbntr0 24873 elcncf 24934 cncfcnvcn 24971 cmssmscld 25403 cmsss 25404 ovolctb2 25546 limcfval 25927 ellimc2 25932 limcflf 25936 limcres 25941 limcun 25950 dvfval 25952 lhop2 26074 taylfval 26418 ulmval 26441 xrlimcnp 27029 axtgcont1 28494 fpwrelmap 32747 ressnm 32931 ressprs 32936 ordtrestNEW 33867 ddeval1 34198 ddeval0 34199 carsgclctunlem3 34285 bnj849 34901 msrval 35506 mclsval 35531 brsset 35853 isfne4 36306 refssfne 36324 topjoin 36331 bj-snglex 36939 mblfinlem3 37619 filbcmb 37700 cnpwstotbnd 37757 ismtyval 37760 ispsubsp 39702 ispsubclN 39894 isnumbasgrplem2 43061 rtrclex 43579 brmptiunrelexpd 43645 iunrelexp0 43664 mulcncff 45791 subcncff 45801 addcncff 45805 cncfuni 45807 divcncff 45812 etransclem1 46156 etransclem4 46159 etransclem13 46168 isvonmbl 46559 isubgriedg 47735 isubgrvtx 47737 uhgrimisgrgric 47783 linccl 48143 ellcoellss 48164 elbigolo1 48291 |
Copyright terms: Public domain | W3C validator |