| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssex | Structured version Visualization version GIF version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22. This is one way to express the Axiom of Separation ax-sep 5254 (a.k.a. Subset Axiom). (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| ssex.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ssex | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3935 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | ssex.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | inex2 5276 | . . 3 ⊢ (𝐴 ∩ 𝐵) ∈ V |
| 4 | eleq1 2817 | . . 3 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → ((𝐴 ∩ 𝐵) ∈ V ↔ 𝐴 ∈ V)) | |
| 5 | 3, 4 | mpbii 233 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 → 𝐴 ∈ V) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: ssexi 5280 ssexg 5281 intex 5302 moabex 5422 naddunif 8660 ixpiunwdom 9550 omex 9603 tcss 9704 bndrank 9801 scottex 9845 aceq3lem 10080 cfslb 10226 dcomex 10407 axdc2lem 10408 grothpw 10786 grothpwex 10787 grothomex 10789 elnp 10947 negfi 12139 limsuple 15451 limsuplt 15452 limsupbnd1 15455 o1add2 15597 o1mul2 15598 o1sub2 15599 o1dif 15603 caucvgrlem 15646 fsumo1 15785 lcmfval 16598 lcmf0val 16599 unbenlem 16886 ressbas2 17215 prdsval 17425 prdsbas 17427 rescbas 17798 reschom 17799 rescco 17801 acsmapd 18520 issstrmgm 18587 issubmgm2 18637 issubmnd 18695 eqgfval 19115 dfod2 19501 ablfac1b 20009 islinds2 21729 pmatcollpw3lem 22677 2basgen 22884 prdstopn 23522 ressust 24158 rectbntr0 24728 elcncf 24789 cncfcnvcn 24826 cmssmscld 25257 cmsss 25258 ovolctb2 25400 limcfval 25780 ellimc2 25785 limcflf 25789 limcres 25794 limcun 25803 dvfval 25805 lhop2 25927 taylfval 26273 ulmval 26296 xrlimcnp 26885 axtgcont1 28402 fpwrelmap 32663 ressnm 32893 ressprs 32897 ordtrestNEW 33918 ddeval1 34231 ddeval0 34232 carsgclctunlem3 34318 bnj849 34922 msrval 35532 mclsval 35557 brsset 35884 isfne4 36335 refssfne 36353 topjoin 36360 bj-snglex 36968 mblfinlem3 37660 filbcmb 37741 cnpwstotbnd 37798 ismtyval 37801 ispsubsp 39746 ispsubclN 39938 isnumbasgrplem2 43100 rtrclex 43613 brmptiunrelexpd 43679 iunrelexp0 43698 mulcncff 45875 subcncff 45885 addcncff 45889 cncfuni 45891 divcncff 45896 etransclem1 46240 etransclem4 46243 etransclem13 46252 isvonmbl 46643 isubgriedg 47867 isubgrvtx 47871 uhgrimisgrgric 47935 linccl 48407 ellcoellss 48428 elbigolo1 48550 |
| Copyright terms: Public domain | W3C validator |